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1. Introduction

Recent developments in the study of planar N = 4 SUSY Yang-Mills (and the dual string

theory on AdS5 ×S5) have culminated in a proposal for a set of Asymptotic Bethe Ansatz

Equations (ABAE) [1 – 4, 30]. These equations determine the exact scaling dimensions

∆, of all operators in a limit where a conserved R-charge J becomes infinite, with the

difference ∆− J and the ’t Hooft coupling λ = g2
YMN held fixed. The proposed equations

hold for all values of λ, but for λ >> 1 their predictions can be compared to the results of

semiclassical calculations in the worldsheet theory of the AdS5×S5 string. In this limit, the

basic excitations of the worldsheet theory are solitons known as “Giant Magnons” which

propagate on an infinitely long string [5]. The exact ABAE lead to non-trivial predictions

for the dispersion relation of these solitons and also for their scattering matrix. These

predictions were compared to the results of a leading-order semiclassical calculation in [5]

(see also [8, 9]).
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The main aim of this paper is to extend this comparison by performing a first-principles

calculation of the soliton dispersion relation and S-matrix [1] to the next order1 in the

semiclassical expansion of the worldsheet theory. Our main result is a complete calculation

of the soliton S-matrix at one-loop, which yields exact agreement with the predictions of

the ABAE. In particular, we will reproduce in full the Hernandez-Lopez (HL) term in

the magnon S-matrix which was originally obtained by considering the one-loop quantum

correction to a circular string in AdS5 × S5 [6, 7]. Our calculation, therefore provides

further confirmation of the universality of the HL term in semiclassical string physics on

AdS5×S5. For other interesting recent work on one-loop corrections, including a derivation

of the HL term in the context of finite gap solutions see [10, 11]2 (see also [12] and [13]).

In the rest of this introductory section we will review some basic features of semiclassical

soliton quantisation [14 – 16] required for our analysis.

For simplicity we begin by considering the theory of a single scalar field ϕ(x, t) of mass

m in one space and one time dimension with a dimensionless coupling constant 1/g. The

field obeys non-linear equations with a two-parameter family of soliton solutions,

ϕ = ϕcl(x, t;x(0), p) (1.1)

The soliton is a localised lump of energy density E(x, t) centred around the point x = x(0)

at time t = 0 (see figure 1). The parameter p corresponds to the conserved momentum

conjugate to the spatial coordinate x. The soliton has finite classical energy E(p) = gEcl(p)

and moves at constant velocity v = v(p) ∼ dE/dp. At time t, the energy density is therefore

centred around the point x = x(0) + vt. All these features are realised, for example, in

the specific case of the sine-Gordon kink. To match as closely as possible the case of

interest, we will not assume (1 + 1)-dimensional Lorentz invariance for the full non-linear

equations of motion.3 Thus the solution ϕcl(x, t;x(0), p) is not related in a simple way to

the solution with p = 0. However, again motivated by the specific problem of interest, we

will assume that the the linearised equation of motion takes the standard relativistic form

(−∂2
t + ∂2

x + m2)ϕ(x, t) = 0. It follows that the soliton configuration has exponentially

decaying asymptotics at left and right spatial infinity,

ϕcl(x, t;x(0), p) ∼ exp(−c|x|) as x → ±∞ , (1.2)

where c = c(p) is a positive constant which is equal to the mass m for a static soliton at

rest.

After quantisation, the soliton yields a massive single-particle asymptotic state of the

theory. Its dispersion relation has a semiclassical expansion of the form,

E(p) = gEcl(p) + ∆E(p) + O

(
1

g

)

. (1.3)

1In the following, we will refer to the first two orders in the semiclassical expansion as tree-level and

one-loop respectively.
2We comment further on the relation of our calculation to the approach of these references at the end

of this section.
3In the case of the string world-sheet theory in static gauge, two dimensional Lorentz invariance is broken

by the Virasoro constraints.
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Figure 1: The one-soliton solution at time t = 0.

Our first goal is to calculate the one-loop correction to the energy ∆E(p). In general,

one-loop quantum corrections are determined by the spectrum of the small fluctuation

operator,

Ĥ =
δ2L

δϕ(x, t)2

∣
∣
∣
∣
ϕ=ϕcl(x,t;x(0),p)

(1.4)

where L is the Lagrangian density of the theory. In particular we will study the auxiliary

Schrodinger problem defined by the linearised equation of motion in the soliton background,

Ĥψ(x, t) = 0 (1.5)

where we will consider complex solutions ψ ∈ C.

The asymptotics of Ĥ are determined by the asymptotics of the soliton solution to be,

Ĥ → −∂2
t + ∂2

x + m2 + O(e−c|x|) (1.6)

for x → ±∞ at fixed time t. For each k ∈ R, we can choose a solution, ψk(x, t) of the small

fluctuation equation (1.5) which goes like,

ψ(x, t) ∼ exp (iE(k)t + ikx) (1.7)

with E(k) =
√

k2 + m2, as x → −∞. This corresponds to a plane-wave with wave number

k incident upon the soliton from the left. Following the same solution to the asymptotic

region to the right of the soliton, we will find that the solution will consist of a transmitted

wave of the form,

ψ(x, t) ∼ exp (iδ(k; p)) exp (iE(k)t + ikx) (1.8)

– 3 –
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as x → +∞, where the real quantity δ(k; p) corresponds to the phase shift due to scattering

on the soliton background. Of course in a general scattering problem, to obtain asymp-

totics of the form (1.8) we would also have to include a reflected wave which modifies the

left asymptotics (1.7). A special feature of many integrable partial differential equations

with soliton solutions and, in particular, of the cases considered in this paper, is that the

classical reflection amplitude vanishes. Another potential complication is the existence of

normalisable bound state solutions of the linearised equation (1.5) with exponentially de-

caying asymptotics. Again, this feature will be absent in all the cases considered in this

paper.

The quantity δ(k; p) describes the classical scattering of a plane wave off the soliton

background. As we now review, this classical scattering data is the basic ingredient we

need to compute one-loop quantum corrections to the soliton. In particular, the phase

shift δ(k; p) determines the density of scattering states which provides the measure for

integrating over the continuous spectrum of the small fluctuation operator Ĥ. The resulting

formula for the one-loop correction to the soliton energy is [14],

∆E(p) =
1

2π

∫ +∞

−∞
dk

∂δ(k; p)

∂k

√

k2 + m2 . (1.9)

The derivation of this formula is given in appendix A.

In the following we will need a slight generalisation to the case of NF scalar fields

ϕI , I = 1, 2, . . . , NF , with Bose/Fermi statistics depending on the sign (−1)FI . We will

assume that fluctuations of each these fields around the soliton background have the same

asymptotic dispersion relation E =
√

k2 + m2 and that the classical scattering matrix of

the fluctuations is diagonal with eigenvalues exp(iδI(k; p)), I = 1, 2, . . . , NF . All these

features will be present in the case of interest below. With these assumptions, the one-loop

correction to the dispersion relation becomes,

∆E(p) =
1

2π

NF∑

I=1

(−1)FI

∫ +∞

−∞
dk

∂δI(k; p)

∂k

√

k2 + m2 . (1.10)

In general the formulae (1.9), (1.10) may suffer from UV divergences which require regular-

isation. In the supersymmetric case of interest, we will find that these divergences cancel

between Bosons and Fermions.

A characteristic feature of integrable PDEs in two spacetime dimensions is the existence

of exact classical solutions describing the scattering of an arbitrary number of solitons. Here

we will focus on a solution describing the scattering of two solitons of momenta p1 and p2

(see figure 2),

ϕ = ϕscat(x, t;x
(0)
1 , x

(0)
2 , p1, p2) . (1.11)

As shown, the solution also depends on the positions x
(0)
1 and x

(0)
2 of the two constituent

solitons at time t = 0. The conservation of the higher conserved charges implied by

integrability ensures that the only effect of the scattering is a time delay ∆T (p1, p2) relative

to free propagation of the two constituent solitons. Thus, in the far past t → −∞, and the

– 4 –
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Figure 2: The two-soliton scattering solution at time t = 0.

far future, t → +∞ the solution asymptotes to a linear superposition of two single soliton

solutions,

ϕscat(x, t;x
(0)
1 , x

(0)
2 , p1, p2) → ϕcl(x, t;x±

1 , p1) + ϕcl(x, t;x±
2 , p2) (1.12)

where the asymptotic values of the position parameters4 as t → ±∞ are,

x±
1 = x

(0)
1 ∓ v1

∆T

2
, x±

2 = x
(0)
2 ∓ v2

∆T

2
(1.13)

and, as above, the individual soliton velocities are vi ∼ dEi/dpi for i = 1, 2.

Another important consequence of integrability is the factorisation of the scattering

data corresponding to the two soliton solution. In particular, a plane-wave of wave number

k incident on the two-soliton solution from the left experiences a phase shift,

δ(k; p1, p2) = δ(k; p1) + δ(k; p2) . (1.14)

In other words, the phase shift experienced by the incident wave is simply the sum of the

phase-shifts associated with the two constituent solitons. This property, which we will

verify directly below, is related to the complete factorisation of the S-matrix which is a

hallmark of an integrable theory.

In the quantum theory, solitons correspond to asymptotic states which scatter with an

S-matrix,

S(p1, p2) = exp (iΘ(p1, p2)) . (1.15)

At weak coupling, 1/g ≪ 1, the phase Θ has a semiclassical expansion of the form,

Θ(p1, p2) = gΘcl(p1, p2) + ∆Θ(p1, p2) + O

(
1

g

)

. (1.16)

A famous formula of Jackiw and Woo [17] relates the leading semiclassical contribution to

the quantum S-matrix and the time-delay ∆T (p1, p2) in classical scattering,

Θcl(p1, p2) =
1

g

∫ E(p1,p2)

ETh

∆T (E)dE (1.17)

4The parameters x±

1 and x±

2 as defined in this equation should not be confused with the spectral

parameters introduced later in the paper.
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where ETh denotes the threshold energy for scattering. Much less well known, is the

simple formula which determines the one-loop correction to the S-matrix in an integrable

field theory in terms of the classical scattering data,

∆Θ(p1, p2) =
1

2π

∫ +∞

−∞
dk

∂δ(k; p1)

∂k
δ(k; p2) . (1.18)

This formula was first obtained in the context of sine-Gordon theory by Faddeev and Kore-

pin [15].5 A more general derivation is provided in appendix B. Again we will also require

a generalisation to the case of NF fields with diagonal scattering (see equation (1.10)),

∆Θ(p1, p2) =
1

2π

NF∑

I=1

(−1)FI

∫ +∞

−∞
dk

∂δI(k; p1)

∂k
δI(k; p2) . (1.19)

The above formulae (1.10) and (1.19) reduces the problem of computing one-loop

corrections to the soliton dispersion and S-matrix to the problem of finding the classical

phase shifts, δI(k; p), of small fluctuations around the background of a single soliton. The

bulk of the paper is devoted to solving this problem for the case of a Giant Magnon solution

of the worldsheet theory of arbitrary charge. In fact, we will describe three different

approaches to determining the phase shifts. The first method is originally due to a clever

observation of Dashen, Hasslacher and Neveu [14], that a linearised fluctuation around a

background containing n solitons can be obtained as a degenerate limit of an n + 1 soliton

solution. In particular we will apply this approach to the exact multi-soliton solutions of

the bosonic world sheet fields constructed via the dressing method developed in [18, 19].

The second approach relies on obtaining the spectral data for fluctuations around the Giant

Magnon in the finite-gap formalism of [20, 21]. This approach reproduces the results of

the dressing method for the bosonic fluctuations and also produces explicit results for the

phase shifts of the fermionic fields. Finally, we provide a further check on the phase shifts

by comparing them with the proposed exact magnon S-matrix [3] in a limit where one

magnon becomes a worldsheet soliton and the other becomes an elementary fluctuation of

the worldsheet fields. Note that this comparison involves only the leading-order piece of

the proposed exact S-matrix in the semiclassical limit which already has many independent

tests. Having extracted the classical scattering data, we use it to calculate the one-loop

correction to the S-matrix of two giant magnons using formula (1.19) and compare with

the Hernandez-Lopez one-loop contribution [6] to the exact S-matrix. We also demonstrate

the vanishing of the one-loop correction to the soliton energy, completing an earlier partial

calculation appearing in [42].

The paper is organised as follows. In the next section we review the predictions for

soliton scattering coming from the ABAE. In section 3 we describe the different approaches

to extracting the classical scattering data outlined above. Finally in section 4 we complete

the calculation of the one-loop corrections to the soliton dispersion relation and S-matrix

obtaining exact agreement with the predictions described in section 2. Various technical

details and derivations are relegated to the appendices.

5See, in particular, Eqn (4.6) on p62 of this reference and the discussion following Eqn (4.28) on p66.
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In interesting recent work, Gromov and Vieira [10, 11] have also provided a semiclas-

sical derivation of the Hernandez-Lopez phase. Our calculation differs from theirs in that

we are directly computing the S-matrix for soliton scattering with vacuum boundary con-

ditions, while they are computing the one-loop energy shift for finite gap solutions with

periodic boundary conditions. Nevertheless it is clear that the two calculations are re-

lated. In particular, in section 3.2, we obtain the classical scattering data for the fermionic

worldsheet fields in the soliton background by taking a limit of an appropriate finite gap so-

lution. On the other hand, the scattering data for the bosonic worldsheet fields is obtained

in section 3.1 by explicit construction of soliton scattering solutions.

2. Predictions from Bethe Ansatz and Scattering Matrix

2.1 The asymptotic spectrum and its semiclassical limits

The asymptotic spectrum of the gauge theory spin chain consists of an infinite tower of

BPS states labelled by a positive integer Q , Q ∈ Z
+, and their conserved momentum p.

The elementary excitation, called the “magnon”, corresponds to the case Q = 1. States

with Q > 1 correspond to the bound states of these elementary magnons [22]. Being

short representations of the extended residual symmetry algebra psu(2|2)2 ⋉ R
3 which

carry conserved central charges, the dispersion relation of the elementary magnon and the

bound states is then fixed by the shortening condition to be [3, 4, 22, 29],

∆ − J = E =

√

Q2 + 16g2 sin2
(p

2

)

. (2.1)

Here we have introduced the coupling g2 = λ/16π2. The magnon dispersion relation (2.1)

is common to all states in the supermultiplet of dimension 16Q2 [23].

As usual we introduce a convenient representation of the dispersion relation in terms

of spectral parameters X± where,

p(X±) =
1

i
log

(
X+

X−

)

; (2.2)

so that the energy E and charge Q can be expressed as

E(X±) =
g

i

[(

X+ − 1

X+

)

−
(

X− − 1

X−

)]

, (2.3)

Q(X±) =
g

i

[(

X+ +
1

X+

)

−
(

X− +
1

X−

)]

. (2.4)

Real values of E and P are obtained by imposing X− = (X+)∗. In the following we will use

lower case letters x± and y± to denote the spectral parameters in the case of the elementary

magnon Q = 1.

It will be of interest to understand the semiclassical string limit, g → ∞ of the ele-

mentary magnons and their bound states. Importantly, there are several distinct ways in

– 7 –
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which the limit can be taken. The first, which we will call the “plane-wave” limit6 is given

by:

g → ∞ , p ∼ 1

g
, Q Fixed . (2.5)

In terms of the spectral parameters X±, this can be equivalently imposed by

X+ ∼ X− ≈ r + O(1/g) , r ∈ R , (2.6)

so that the dispersion relation for the magnon and its bound states becomes

∆ − J =
√

Q2 + k2 , (2.7)

where the combination k = 2gp ∼ O(g0) is kept fixed in the limit (2.6). In this limit, the

magnon goes over to the elementary excitation of the worldsheet fields of the AdS5 × S5

string. In canonical quantisation these states are the quanta associated with linearised

fluctuations of the worldsheet fields around a point-like string (the BMN solution [25])

which orbits the equator of S5 at the speed of light. The fluctuations take the form of

plane-waves which solve the linearised equations of motion of the worldsheet theory and

have the form,

δZ(x, t) ∼ exp(iωt + ikx) , (2.8)

where Z is a complex worldsheet field. The frequency ω =
√

1 + k2 and the wave number

k can also be written in term of the magnon spectral parameters x± ≃ r as

ω(r) =
r2 + 1

r2 − 1
, k(r) =

2r

r2 − 1
. (2.9)

States with Q > 1 correspond to bound states of the elementary worldsheet excitations in

this limit.

A second interesting limit is the so-called “Giant Magnon” limit [5] which corresponds

to

g → ∞ , p Fixed ; (2.10)

for a BPS state of fixed charge Q. Equivalently, in terms of the corresponding spectral

parameters we have,

X+ ∼ 1

X−
≈ exp(ip/2) + O(1/g) . (2.11)

In this limit the spin-chain magnon and its bound states correspond to a classical soliton

configuration on the string worldsheet with dispersion,

∆ − J ≈ 4g
∣
∣
∣sin

(p

2

)∣
∣
∣ + O(1/g) . (2.12)

The corresponding string energy E = ∆−J scales linearly in g as appropriate for a classical

soliton. In the target spacetime, the worldsheet soliton is identified with loop of open string

6This limit takes its name from its relation to the Penrose limit where the dual string background

becomes a gravitational plane-wave. In the following we will see that the terminology is also appropriate

for an unrelated reason, namely that the magnon is naturally associated with the plane-wave solutions of

the linearized equation of motion in this limit.,BMN

– 8 –
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with endpoints on an equator of S5. It is interesting to note that there is no O(g0) term

in the expansion of the exact dispersion relation (2.1) in this limit. This indicates that the

soliton energy does not receive a correction at one-loop order in the semiclassical expansion,

which corresponds to an expansion in powers of 1/g.

Although the magnon looks quite different in the plane-wave and giant magnon limits

described above, it is possible to smoothly interpolate between the two cases. The elemen-

tary quantum of the worldsheet theory and the classical soliton are representatives of the

same excitation in different regions of momentum space. This is particularly clear if one

considers the “near flat-space” limit introduced [26] where x+ ∼ x− ∼ 1.

The Giant Magnon limit discussed above is identical for all BPS states of fixed charge

Q. As the charge is an adjustable parameter we can also take a different limit,

g → ∞ , Q ∼ g , p Fixed ; (2.13)

where the spectral parameters X± remain fixed and, as before, obey the constraint:
(

X+ +
1

X+

)

−
(

X− +
1

X−

)

= i
Q

g
∼ O(g0) . (2.14)

This limit yields a family of classical soliton configurations of the worldsheet theory, with

energy

∆ − J =

√

Q2 + 16g2 sin2
(p

2

)

∼ O(g) , (2.15)

where Q ∼ g is now regarded as a continuous parameter.7 These solutions are known

as “Dyonic Giant Magnons” (DGMs) [27] (see also [18, 28, 44]) and we will refer to the

corresponding limit as the “DGM limit”. The previously discussed Giant Magnon of [5] is

obtained as a smooth Q → 0 of this more general solution. As the DGM dispersion relation

coincides with the exact dispersion relation (2.1), the only correction is the quantisation

of the charge Q integer units. As in the ordinary Giant Magnon case, we should therefore

expect that the one-loop correction to the soliton energy vanishes. In the following we will

check this vanishing by a direct calculation in the worldsheet theory.

2.2 The magnon scattering matrix

The exact S-matrix for two elementary magnons in the same su(2) sub-sector takes the

form,

s
su(2)(x

±, y±) = sBDS(x
±, y±)σ2(x±, y±) , sBDS(x

±, y±) =
x+ − y−

x− − y+

1 − 1/x+y−

1 − 1/x−y+
.

(2.16)

Here the factor sBDS(x±, y±) originates in the conjectured all-loop Bethe Ansatz of [29],

and σ(x±, y±) = exp(iθ(x±, y±)) is known as the “dressing factor”and θ(x±, y±) will be

called the “dressing phase”. An exact form for the dressing phase was recently conjectured

in [30]. Following earlier important work [31], the authors implemented the constraints

7Like all the soliton solutions considered here the solution also depends non-trivially on the momentum

p and the initial position x(0).
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of crossing symmetry [32] and Kotikov-Lipatov’s principle of maximal transcendentality

to obtain an explicit expression for the phase [33, 34] (see also [35] for earlier proposal

using transcendentality principle). The poles of the resulting magnon S-matrix correspond

precisely with expectations based on the exact spectrum (2.1) [24]. In the strong coupling,

expansion, the conjectured phase of [30] reproduces the previously obtained tree-level [36]

and the one-loop [6] contributions.

The exact dressing phase θ(x±, y±) is anti-symmetric under the interchanges of spectral

parameters and can be written as,

θ(x±, y±) = k(x+, y+) − k(x+, y−) − k(x−, y+) + k(x−, y−) . (2.17)

In the strong-coupling limit, g → ∞, θ(x±, y±) and k(x, y) can be expanded as,

θ(x±, y±) = gθ0(x
±, y±) + θ1(x

±, y±) + O(1/g) , (2.18)

k(x, y) = gk0(x, y) + k1(x, y) + O(1/g) . (2.19)

respectively. The explicit form of the tree-level contribution was first proposed in [36] and

take the form,

k0(x, y) =

[(

y +
1

y

)

−
(

x +
1

x

)]

log

(

1 − 1

xy

)

. (2.20)

The one-loop term k1(x, y) was first obtained in [6] from considering the quantum fluctu-

ations certain spinning string solution and can be written as [37],

k1(x, y) = κ1(x, y) − κ1(y, x) , (2.21)

κ1(x, y) =
1

π
log

(
y − 1

y + 1

)

log

(
x − 1/y

x − y

)

+
1

π

[

Li2

(√
y − 1/

√
y

√
y −√

x

)

− Li2

(√
y + 1/

√
y

√
y −√

x

)

+Li2

(√
y − 1/

√
y

√
y +

√
x

)

− Li2

(√
y + 1/

√
y

√
y +

√
x

)]

. (2.22)

In the following our main concern will be with the consequences of the above expres-

sions for the semiclassical scattering of worldsheet solitons. In particular, in the limit

g → ∞, the expression (2.20) determines the leading semiclassical contribution to the

S-matrix of two Giant Magnons. This prediction was checked against a first-principles

calculation in [5]. One of the main aims of this paper is to extend this check to the next

order in 1/g. In this regard, it is important to note that the correspondence between the

expansions (2.18) and (2.19) and the semiclassical expansion of the worldsheet theory is not

quite straightforward. The reason is that the magnon spectral parameters contain hidden

dependence on the coupling g because of the constraint,
(

x+ +
1

x+

)

−
(

x− +
1

x−

)

=
i

g
(2.23)

which follows from (2.4) with Q = 1. This problem is easily avoided by working in the

slightly more general context of the scattering of two magnon bound states of charges Q1
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and Q2. As discussed in [8], the exact bound state S-matrix can be constructed from

the exact magnon S-matrix via the standard fusion procedure. The result is conveniently

expressed in terms of the bound state spectral parameters introduced above as,

S
su(2)(X

±, Y ±) = SBDS(X
±, Y ±)σ2(X±, Y ±) . (2.24)

Here SBDS(X,Y ) is the exact expression constructed from applying the fusion procedure

to the BDS part, sBDS(x, y), of the magnon S-matrix in (2.16). The explicit expression,

which will not be needed here, can be found in [8]. Importantly, the factor σ2(X±, Y ±) is

exactly the same dressing factor appearing in the elementary magnon S-matrix (2.24), the

only difference being that the bound state spectral parameters X±, Y ± replace the spectral

parameters x±, y± of the fundamental magnons.

We can now take the DGM limit (2.13) for both magnon bound states. As the spectral

parameters remain fixed in this limit, the terms in the strong-coupling expansion of the

dressing phase σ(X±, Y ±) correspond directly to terms in the semiclassical expansion of

the worldsheet theory. The resulting semiclassical S-matrix can be written in the first two

orders as,

S
su(2)(X

±, Y ±) ∼= exp(2iΘ(X±, Y ±)) , (2.25)

Θ(X±, Y ±) = K(X+, Y +) − K(X+, Y −) − K(X−, Y +) + K(X−, Y −) , (2.26)

K(X,Y ) = gK0(X,Y ) + K1(X,Y ) + O(1/g) . (2.27)

The function K0(X,Y ) was calculated in [8] and checked against a leading order semiclas-

sical calculation of the dyonic giant magnon scattering matrix. It is given by

K0(X,Y ) =

[(

X +
1

X

)

−
(

Y +
1

Y

)]

log(X − Y ) . (2.28)

Notice that K0(X,Y ) is functionally different from k0(x, y) in (2.20). As explained in [8],

this is due to a non-trivial contribution from the BDS piece SBDS. At the next order, we

have

K1(X,Y ) = k1(X,Y ) , (2.29)

where the function k1 is defined in (2.21). In other words the one-loop contribution to the

bound state S-matrix comes purely from the dressing phase and is therefore functionally

identical to the Hernandez-Lopez contribution to the magnon dressing phase. This can be

traced to the fact that the BDS term SBDS(X±, Y ±) is analytic in g2 and therefore only

contributes at even loop order in the worldsheet expansion.

The main conclusion of this section concerns the predictions for the one-loop contri-

butions to the dispersion relation and scattering matrix of Dyonic Giant Magnons. Specif-

ically we have seen that the known exact dispersion relation requires that the one-loop

correction to the soliton mass vanishes exactly. The one-loop correction to the S-matrix

can be expressed in terms of the Dyonic Giant Magnon spectral parameters X± and Y ±

defined above and is functionally identical to the Hernandez-Lopez contribution to the

magnon dressing phase. In the rest of the paper we will test these results against direct

semiclassical calculations.
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3. Determining the classical phase shifts

As explained in the introduction, the main ingredient in the calculation of one-loop quan-

tum corrections is the classical scattering data for small fluctuations around the soliton

solution. In particular we need to determine the phase shifts for classical plane waves

scattering off multiple solitons. In this section we will address this problem using three

different approaches, each of which will yield part of the information we need.

The starting point is the Metsaev-Tseytlin action for the Green-Schwarz superstring

in AdS5 × S5 in conformal gauge [38 – 40]. Here the global embedding that parametrises

the AdS5 × S5 spacetime can be chosen as

AdS5 : −|Y1|2 + |Y2|2 + |Y3|2 = −1 ,

S5 : |Z1|2 + |Z2|2 + |Z3|2 = 1 . (3.1)

For our study of worldsheet scattering matrix, Y1 and Z1 are gauge-fixed to form the longi-

tudinal light-cone coordinates, whereas {Y2, Ȳ2, Y3, Ȳ3;Z2, Z̄2, Z3, Z̄3} become eight bosonic

transverse excitations and combine to transform in the (bi-)vector representation under the

residual SO(4)×SO(4) subgroup. Similarly for the worldsheet fermions, under such gauge

choice, the remaining components (after fixing κ-symmetry) become {θ1, . . . , θ4, η1, . . . , η4},
they combine to transform in the bi-spinor representation of SO(4)×SO(4). Together, the

eight bosonic and eight fermionic fluctuations form the bi-fundamental representations of

residual PSU(2|2)2 symmetry group. We will consider these sixteen fluctuations around a

classical soliton background, and we shall use a uniform notation to denote them:

I ≡ {
IAdS5

︷ ︸︸ ︷

Y2, Ȳ2, Y3, Ȳ3;

I
S5

︷ ︸︸ ︷

Z2, Z̄2, Z3, Z̄3; θ1, θ2, θ3, θ4; η1, η2, η3, η4
︸ ︷︷ ︸

Ifermions

}.

As we review below, the Dyonic Giant Magnon (DGMs) is a soliton solution of the

worldsheet theory for which the corresponding string motion occurs on an R×S3 subman-

ifold of AdS5 × S5. We need to consider linearised fluctuations of all of the world sheet

fields around the classical solution corresponding to one or more DGMs. The necessary

phase shifts are then encoded in the asymptotics of the fluctuations in the limits x → ±∞
where x is the space-like worldsheet coordinate. In the next subsection we will proceed by

constructing multi-DGM solutions and their classical fluctuation spectra explicitly using

the dressing method. In its present form this method is only applicable to the bosonic

worldsheet fields. In subsection 3.2, we employ a different method based on the finite gap

construction of [20] which also yields the phase shifts for the fermionic worldsheet fields.

Finally, in subsection 3.3, we describe a third method using the proposed all-loop magnon

scattering matrix [3] which provides further non-trivial checks on our results.

3.1 Phase shifts from the dressing method

In this section we present the semiclassical phase shifts calculated directly from string sigma

model using the so-called “dressing method”. This is a standard technique for constructing
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multi-soliton solutions in classical integrable systems which was applied in the present

context by Spradlin and Volovich [18].

As discussed in the previous section, the Dyonic Giant Magnon (DGM) is a soliton

on the string worldsheet [27]. It corresponds to a family of classical solutions labelled by

the conserved momentum p and charge Q = J2, where J2 is one of the three generators

J1, J2, J3 for the global symmetry group SO(6) of the sphere S5. This data can be equiv-

alently given by two complex spectral parameters X+ and X− = (X+)∗. The solution is

also labelled by its initial position x(0) as well as some extra parameters which determine

its orientation inside S5 at time t = 0. As discussed above, the DGM admits a special limit

where X+ ≃ 1/X−, the charge vanishes and the solution reduces to an ordinary Giant

Magnon of the type considered by Hofman and Maldacena [5]. It also admits a limit where

X+ ≃ X− ≃ r and it collapses to the vacuum. In the target space the vacuum configu-

ration is just the BMN string solution describing a pointlike string orbiting an equator of

S5. Near this degenerate point the soliton solution reduces to a solution of the linearised

equations of motion corresponding to a plane wave of small amplitude with wave number

and frequency,

ω(r) =
r2 + 1

r2 − 1
, k(r) =

2r

r2 − 1
. (3.2)

As we shall review below, the dressing method allows us to construct exact multi-

soliton solutions of the worldsheet theory. In particular we can construct a configuration

containing N DGMs with individual spectral parameters X±
i , for i = 1, 2, . . . , N . We can

now take a limit where, for example for the n-th DGM X+
n ≃ X−

n and the solution collapses

to the one describing N − 1 DGMs. Near this limit the exact solution must go over to a

solution of the equations linearised around the N − 1 soliton solution. As first noted by

Dashen, Hasslacher and Neveu [14], this construction provides an elegant way of extracting

the exact spectrum of small fluctuations and, in particular, the corresponding phase shifts.

We will now apply this methodology to the bosonic sector of the worldsheet σ model. Some

of the the calculation details are relegated to appendix C.

The Dyonic Giant Magnon corresponds to string motion in an R× S3 subspace of the

the full AdS5 × S5 spacetime. It is easy to check that fluctuations in the AdS5 directions

couple trivially to this background and thus have vanishing phase shifts. Thus we will

focus on the S5 sector of the worldsheet theory. Following [18] we work in static gauge

and the worldsheet theory in this sector essentially reduces to a bosonic sigma-model on

a flat two-dimensional worldsheet with the coset SU(4)/Sp(2) ≈ S5 as target space. The

equations of motion of this σ-model must be also supplemented by the Virasoro constraints.

The coset construction exploits the existence of a Z2-automorphism Ω ∈ Aut(SU(4)),

where

Ω(g) := J−1gT J, where g ∈ SU(4) and J =








0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0








. (3.3)

It has the property Ω2 = 1. The condition

Ω(P) = P for P ⊂ SU(4) (3.4)
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will give us P ≈ SU(4)/Sp(2) ≈ S5. This allows for a decomposition of SU(4) into

SU(4) ≈ Sp(2) ⊗ SU(4)/Sp(2) .

A convenient parametrisation of the coset is given by,

g =








Z1 Z2 0 Z3

−Z̄2 Z̄1 −Z̄3 0

0 Z̄3 Z1 −Z̄2

−Z̄3 0 Z2 Z̄1








,

where the components Z1, Z2 and Z3 satisfy
∑3

i=1 |Zi|2 = 1. By defining the flat current

j = −g−1dg ∈ su(4), we can make the following decomposition,

j = H + P, H ∈ sp(2), P ∈ su(4)/sp(2).

The equations of motion for the sigma model can then be written succinctly as

d ⋆ P = ⋆P ∧ H + H ∧ ⋆P ,

where ⋆ denotes the Hodge-dual with respect to the worldsheet metric. These can be equiv-

alently be expressed as the zero curvature condition of the following flat Lax connection

ĵ(X) = H +
1 + X2

1 − X2
P +

2X

1 − X2
⋆ P,

with X ∈ C being a spectral parameter, and notice that ĵ(X = 0) = j. By picking the

coordinates z± = 1
2 (x± t) as coordinates in the worldsheet, we find this connection has the

form

ĵ(X) = H +
∂−g g−1

1 − X
+

∂+g g−1

1 + X
.

The flatness condition for ĵ is equivalent to the consistency conditions for the auxiliary

linear problem,
[

∂− − ∂−g g−1

1 − X

]

Ψ(X) = 0 ,

[

∂+ − ∂+g g−1

1 + X

]

Ψ(X) = 0 .

Clearly Ψ(X = 0) = g will be a solution to these equations. Only those solutions that

further obey (3.4) and the Virasoro constrains will be solutions of the string equations of

motion.

The trivial vacuum solution of the equations of motion corresponding to the BMN

point like string solution is given by,

Ψ0(X) = diag(eiZ(X), e−iZ(X), eiZ(X), e−iZ(X)),

where

Z(X) =
z−

X − 1
+

z+

X + 1
,
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This solution has vanishing energy ∆ − J1 = 0.

The dressing method proceeds by applying a spectral-parameter dependent gauge

transformation to both the connection ĵ(X) and the auxiliary wave function Ψ(X). It

is a solution generating technique that can be used to map trivial solutions of the equa-

tions of motion into new non-trivial solutions. Here we review the construction given

in [18, 19], more details can be found in [18, 19, 41]. Explicitly, a new solution can be

determined from the vacuum solution by acting on it with a gauge transformation χ1(X),

{

Ψ1(X) = χ1(X)Ψ0(X) ,

ĵ1(X) = χ1(X) ĵ0(X)χ−1
1 (X) + dχ1(X)χ−1

1 (X) ,

where ĵ0(X) ≡ ĵ(X)|g=g0 and

χ1(X) = 1 +
X1 − X̄1

X − X1
P1[w1] +

1/X̄1 − 1/X1

X − 1/X̄1
Q1[w1] .

The projection operators P1,Q1 are determined from Ψ0 itself by requiring that the dressing

transformation does not change the analytic structure of the Lax connection ĵ(X) and

that Ψ1(X) obeys (3.4). Here w1 is a four-component vector specifying the orientation

of the solution in the target space. In particular, by taking g1 = Ψ1(0) and making

the identifications X1 = r1e
ip1/2 ≡ X+

1 and X̄1 = r1e
−ip1/2 ≡ X−

1 , and selecting the

polarisation vector w1 ≡ w‖ = (1, i, 0, 0)t, we recover the familiar DGM solution of [27],

g1 = g0 −
X+

1 − X−
1

X+
1

(

P1[w1] + Q1[w1]
)

g0 .

This solution has the following conserved quantities:

∆ − J1 = 2g
1 + r2

1

r1

∣
∣
∣ sin

(p1

2

)∣
∣
∣ , (3.5)

J2 = 2g
1 − r2

1

r1

∣
∣
∣ cos

(p1

2

)∣
∣
∣ , (3.6)

J3 = 0 . (3.7)

The orientation vector w1 = w‖ determines which SU(2) ≃ S3 subspace of the target

S5 in which the DGM is embedded. Picking an orthogonal orientation vector w1 ≡ w⊥ =

(i, 0, 0, 1)t simply has the effect of interchanging the Cartan charges J2 and J3 and selecting

a different SU(2) subspace for the embedding.

As mentioned above, in the limit

p1 → 0, r1 fixed ⇔ X+
1 ∼ X−

1

the DGM solution goes over to the vacuum, g1(x, t) → g0(x, t). Expanding g1 in η ≡
X+

1 − X−
1 , we find that, at linear order in η, the resulting solution describes a plane

wave propagating in the background described by g0. The dressing method allows us to

determine easily an explicit expression for the perturbed solution by evaluating,

g1 = g0 + δg0,
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with

δg0 = −2i sin
(p1

2

)(

P1[w1] + Q1[w1]
)∣
∣
∣
η=0

g0,

being the plane-wave solution. For the orientation w1 ≡ w‖ we find,

δg0 ≡








δZ1 δZ2 0 δZ3

−δZ̄2 δZ̄1 −δZ̄3 0

0 δZ̄3 δZ1 −δZ̄2

−δZ̄3 0 δZ2 δZ̄1








(3.8)

= −2i sin
(p1

2

)

· 1

2








1 ieiv1 0 0

−ieiv1 1 0 0

0 0 1 ieiv′1

0 0 −ieiv′1 1















eit 0 0 0

0 e−it 0 0

0 0 eit 0

0 0 0 e−it








, (3.9)

where v1 ≡ Z(r1) + Z̄(r1) = 2Z(r1) and v′1 = v1(1/r1). We then obtain,

δZ1 = −i sin
(p1

2

)

e+it . (3.10)

δZ2 = sin
(p1

2

)

eiω1t−ik1x , (3.11)

δZ3 = 0 . (3.12)

Thus the perturbation has the form of a plane wave with wave number given by k1 =

2r1/1 − r2
1 and frequency ω1 = 1 + r2

1/1 − r2
1 =

√

k2
1 + 1. As the background is the trivial

vacuum there is no phase shift. We can also take an orthogonal orientation vector w1 = w⊥

to obtain identical results but with δZ2 and δZ3 interchanged.

We can now apply the same technique to determine the solution describing the propa-

gation of a plane-wave in the n-soliton background. Since we merely need to determine the

phase shifts δZk
(r; {X±

j }) and δZ̄k
(r; {X±

j }) corresponding to the fields δZk and δZ̄k, we

will be only interested in the asymptotic limits of this perturbation solution rather than

the full solution. The phase shifts in general can then be calculated from:

δZk
(r; {X±

j }) = −i log (δZk)
∣
∣
∣
+∞

− i log (δZk)
∣
∣
∣
−∞

. (3.13)

Here we only list the results calculated from this approach, and we present the relevant

calculation details in the appendix C. The polarisations within this sector will be labelled

by the coordinates that suffer a non-trivial phase shift, I ∈ IS5 ≡ {Z2, Z̄2, Z3, Z̄3}, i.e., a

plane-wave aligned with the background soliton will have a non-trivial phase-shift in the

directions Z2, Z̄2, whether a plane-wave with a perpendicular polarisation will have a phase

shift for Z3, Z̄3.

δZ2

(

r; {X±
j }

)

= −δZ̄2

(

1/r; {X±
j }

)

= −2i

N∑

j=1

log

(

r − X+
j

r − X−
j

)

− P, (3.14)

δZ3

(

r; {X±
j }

)

= δZ̄3

(

r; {X±
j }

)

= −i
N∑

j=1

log

(

r−X+
j

r−X−
j

)

− i
N∑

j=1

log

(

1/r−X−
j

1/r−X+
j

)

, (3.15)
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where P ≡ ∑N
j=1 pj is the total dyonic giant magnon momentum and r = r(k) is related

to the plane-wave momentum k by,

k =
2r

r2 − 1
. (3.16)

In the GM limit X±
j → x±

j ≡ exp(±ipj/2) the phase shifts take the form,

δI(r; {x±
j }) = −2i

N∑

j=1

log

(

r − x+
j

r − x−
j

)

− P, I ∈ IS5. (3.17)

Although the dressing method can not be directly applied to the fermionic case,

a fermionic solution for a single Giant Magnon background was presented in [42] (See

also earlier results in [43]). From there one easily determines the phase shift for the

fermionic perturbations around an one-giant magnon soliton background with momentum

p = −i log(x+/x−) as

δI(r;x
±) = −i log

(r − x+

r − x−

)

− p

2
, I ∈ Ifermions ≡ {θ1, . . . , θ4; η1, . . . , η4}. (3.18)

As dictated by supersymmetry, the dispersion relation for a fermionic perturbation is iden-

tical to that of the bosons; ω =
√

k2 + 1 [18], with k the plane-wave momentum, related

to r by (3.16).

3.2 Phase shifts from finite-gap solutions

In the previous section, by applying the dressing method to the S5 sector, we were able to

determine the phase shift caused by the scattering between a plane-wave bosonic fluctuation

and a N -dyonic giant magnon soliton within certain S3 ⊂ S5. Extending the dressing

method to the full theory including fermionic fluctuation remains an unsolved problem. In

this subsection we will sidestep this difficulty by using another formalism [20] which allows

us to construct the spectral data for solutions of the worldsheet σ-model with closed-string

boundary conditions. In particular, the worldsheet fields are now taken to be periodic

in the spatial coordinate x with period ℓ. In static gauge, where the energy density is

constant along the string, the period is related to the string energy as ℓ = ∆/2g. We will

consider string solutions with large but finite energy. Thus, for the moment, we are moving

away from the strict Hofman-Maldacena limit described above where the string becomes

infinitely long. For periodic boundary conditions the spectrum of fluctuations around

a given classical background now becomes discrete. As we review below, the classical

phase shift naturally appears in the corresponding quantisation condition for the wave

number of the small fluctuations. If we pick a classical background which goes over to the

DGM solution in the limit ℓ → ∞, we can then extract the required phase shifts for each

worldsheet field.

3.2.1 Dyonic giant magnons as finite-gap solutions

We will begin this subsection by reviewing the elegant description of classical solutions

with periodic boundary conditions obtained in [20] by Kazakov, Marshakov, Minahan and
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Zarembo (KMMZ). To start with we will restrict our attention to states in a particular

SU(2) sector where the dual string motion is confined to an R × S3 submanifold of the

spacetime. As mentioned in the previous section equations of motion for the bosonic string

admit a Lax formulation, with flat connection j, which immediately implies the existence of

an infinite number of conserved charges at the classical level. The relevant classical solutions

are naturally classified by the analytic behaviour of the corresponding monodromy matrix,

Ω(X) = P exp(
∮

j), and its eigenvalues as functions of the complex spectral parameter

X ∈ C introduced above. For classical strings on R × S3, the monodromy matrix is a

unimodular 2×2 matrix with eigenvalues exp(±ip(X)). Here, the quasi-momentum p(X) is

a complex function of the spectral parameter with prescribed singularities and asymptotics.

In particular, p(X) has poles with equal residue −∆/4g at the points X = ±1 and can also

have branch-cuts denoted Ck for k = 1, . . . ,K. Its discontinuity across each cut is fixed by

the equation,

p(X + iǫ) + p(X − iǫ) = 2πnk (3.19)

for all X ∈ Ck. The integer nk associated with each cut is directly related to the mode

number of a corresponding string oscillator. The quasi-momentum is properly defined as

an abelian integral of a meromorphic differential on an appropriate branched covering of

the complex X-plane. The behaviour of the quasi-momentum at these branch cuts can be

encoded by expressing it in terms of a resolvent G(X) as,

p(X) = G(X) − ∆

4g

[
1

X − 1
+

1

X + 1

]

(3.20)

where the resolvent is defined in terms of a positive density iρ(X) which is non-zero along

a contour C = C1 ∪ C2 . . . ∪ CK whose connected component are the branch cuts,

G(X) =

∫

C
dY

ρ(Y )

X − Y
. (3.21)

From (3.19), we find that the resolvent satisfies the fundamental equation,

G(X + iǫ) + G(X − iǫ) ≡ 2−
∫

C

ρ(Y )

X − Y
dy = 2πnk +

∆

2g

[ 1

X − 1
+

1

X + 1

]

. (3.22)

The conserved charges E = ∆ − J , Q and worldsheet momentum p of the classical

string solution are each determined in terms of the density ρ(X) as,

∫

C
dX ρ(X) =

1

2g
(E + Q) , (3.23)

∫

C
dX

ρ(X)

X
= p , (3.24)

∫

C
dX

ρ(X)

X2
=

1

2g
(E − Q) . (3.25)

In general the allowed configurations of the density ρ(X) are determined by solving the

integral equation (3.22). This leads to families of solutions where ρ varies non-trivially along

the square root branch cuts of p(X). The system also admits another type of configuration
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where ρ(X) remains constant along certain contours in the x-plane. This leads instead

to logarithmic branch points of the quasi-momentum. The corresponding branch cuts are

referred to as “condensate cuts”.

In the present case we are interested in the case of large energy ∆ >> 1. In this case,

the square root branch cuts shrink to zero size and non-trivial configurations are described

by condensate cuts alone. The simplest such configuration is a single condensate cut with

constant density iρ(x) = 1 and endpoints at X = X+ and X = X−. The corresponding

resolvent is,

G(X;X±) = −i

∫ X+

X−

dY

X − Y
=

1

i
log

(
X − X+

X − X−

)

. (3.26)

As we explain below, this is the fundamental quantity we need for obtaining the scat-

tering phase for fluctuations around the dyonic giant magnon. Applying the rela-

tions (3.23), (3.25) and (3.24), we immediately obtain respectively the formulae for the

conserved charges (2.3), (2.4) and (2.2). We can also eliminate the dependence on the

endpoints X± in these expressions to obtain the dispersion relation,

E =

√

Q2 + 16g2 sin2
(p

2

)

(3.27)

This precisely matches the dispersion relation for the Dyonic Giant Magnon (DGM) solu-

tion of classical string theory on R×S3 [8] and it is natural to identify the condensate cut

configuration described above as the KMMZ spectral data corresponding to this classical

solution [44 – 46]. In this classical context, the conserved charge Q is a continuous param-

eter. The original Giant Magnon solution of Hofman and Maldacena [5] is obtained by

taking the limit Q → 0 of this more general configuration.

Now let us consider a perturbation around the dyonic giant magnon solution with

resolvent (3.26) described above. In our discussion of the dressing method in the previ-

ous subsection, the fluctuation corresponded to the introduction of an additional “small”

soliton. The corresponding perturbation of the finite gap data is to introduce a single

additional pole in the quasi-momentum p(X) [10, 11]. Roughly speaking this can also be

thought of as the limiting configuration obtained by shrinking an additional condensate cut

corresponding to an additional DGM. To ensure that the new configuration with the addi-

tional simple pole remains a solution to the equations of motion, the position X = r ∈ R

of the pole is not arbitrary, but is determined by the fundamental equation (3.22) which

now reads,

2G(r;X±) = 2πñ +
∆

2g

[ 1

r − 1
+

1

r + 1

]

, ñ ∈ Z. (3.28)

The worldsheet momentum associated with the additional pole at x = r is simply that of a

corresponding plane wave excitation (2.9) of wavenumber k(r) = 2r/(r2 − 1) = 1/(r − 1)+

1/(r + 1). As mentioned above the length ℓ, of the corresponding closed string (measured

in the worldsheet coordinate x which is normalised to be conjugate to the wavenumber

k) is related to the string energy as ℓ = ∆/2g. We then obtain the following equation

from (3.28),

2G(r;X±) + k(r)ℓ = 2πñ, ñ ∈ Z. (3.29)
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This equation is responsible for quantising the allowed values of the wave-number k(r).

One then immediately recognises the first term on the l.h.s. of the above equation as the

additional phase-shift acquired by the plane-wave fluctuation as it travels a full period ℓ of

the string,

δZ2(r;X
±) = 2G(r;X±) = −2i log

(r − X+

r − X−

)

. (3.30)

This precisely matches the result given in the previous subsection for the phase shift for

excitations inside the SU(2) sector (see Eqn (3.14)) up to an additive constant linearly

proportional to the DGM momentum p.8

3.2.2 Embedding in full AdS5 × S5

We will now apply the method described in the previous subsection to the full AdS5 × S5

background to recover the phase shifts for the fluctuations of each worldsheet field in the

dyonic giant magnon background (See [10, 11, 21] for earlier work). The full superstring

theory is described by a sigma model that has coset target space

PSU(2, 2|4)
Sp(2, 2) × Sp(4)

,

and the Virasoro constraint imposed. An element g ∈ SU(2, 2|4) has the following form9

g =

(

A B

C D

)

,

and the coset can be constructed from the existence of an Z4-automorphism Ω ∈
Aut(PSU(2, 2|4)) with

Ω(g) :=

(

EAT E −ECE

EBT E EDT E

)

and E =








0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0








.

We can then identify H = Ω(H), from which one gets H ≈ Sp(2, 2)×Sp(4). This model is

classically integrable, and its Lax connection is

Ĵ(X) = H +
X2 + 1

X2 − 1
P − 2X

X2 − 1

(

⋆P − Λ
)

+

√

X + 1

X − 1
Q1 +

√

X − 1

X + 1
Q2. (3.31)

Its flatness condition reproduces the worldsheet equations of motion for the IIB superstring

on AdS5 × S5.

A convenient parametrisation for the eigenvalues of the monodromy matrix is given as

follows, {

eip̂1 , eip̂2 , eip̂3 , eip̂4 |eip̃1 , eip̃2 , eip̃3 , eip̃4

}

.

8Such additive constants can be attributed to the different basis choices between string and gauge theories

c.f. [47], and most importantly such ambiguities do not contribute to the calculations of the energy shift

and the one-loop correction to the scattering phase.
9PSU(2, 2|4) does not allow a matrix representation.
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The quasi-momenta p̂1,...,4 and p̃1,...,4 will then be meromorphic functions over the spectral

curve Γ. They will define the 8-sheets of the Riemann surface that will characterise the

solution. These sheets will be connected by a set of cuts C1, . . . , Cn that define the curve.

At these cuts the quasi-momenta can jump by a multiple of 2π,

pi(X + iǫ) − pj(X − iǫ) = 2πnij, X ∈ Cij
k . (3.32)

This equation is the generalisation of Eqn (3.19) appearing in the analysis of the previous

section.

The monodromy matrix obeys [10, 11] the equation

C−1Ω(X)C = Ω−ST (1/X), with C =

(

E 0

0 −iE

)

.

This symmetry of the monodromy matrix translates into the following equations for the

quasi-momenta,

p̃1,2(X) = −p̃2,1(1/X), (3.33)

p̃3,4(X) = −p̃4,3(1/X), (3.34)

p̃1,2,3,4(X) = −p̃2,1,4,3(1/X). (3.35)

These will be of ultimate importance in fixing the quasi-momenta on all the sheets.

To determine the spectral curve corresponding to finite gap solution that giving rise

to the dyonic giant magnon, we make use of this symmetry to embed the SU(2) sector

solution in the full theory,

p̃2(X) = −p̃3(X) = pSU(2)(X) = G(X;X±) − ∆

2g

X

X2 − 1
.

From this and the (3.33) above we obtain,

p̃1(X) = −p̃2

(

1/X
)

= −G
(

1/X;X±
)

+
∆

2g

1/X

1/X2 − 1
= −G

(

1/X;X±
)

− ∆

2g

X

X2 − 1
.

Likewise from (3.34) we obtain

p̃4(X) = −p̃3

(

1/X
)

= pSU(2)

(

1/X
)

= G
(

1/X;X±
)

+
∆

2g

X

X2 − 1
.

Repeating the same procedure we determine the relations between all quasi-momenta and

the su(2) sub-sector resolvent G(X),

p̃1(X) = −p̃4(X) = −G
(

1/X;X±
)

− ∆

2g

X

X2 − 1
, (3.36)

p̃2(X) = −p̃3(X) = G(X;X±) − ∆

2g

X

X2 − 1
, (3.37)

p̂1,2(X) = −p̂3,4(X) = −∆

2g

X

X2 − 1
. (3.38)
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We now apply the same method as before: we introduce a microscopic probe cut (or,

more simply, a pole), corresponding to a small fluctuation, which can connect any of the

eight-sheets. The connection between the excitations of specific worldsheet fields and cuts

connecting particular pairs of sheets of the spectral curve was given in [10]:

S5 : (i, j) =

Z3
︷ ︸︸ ︷

(1̃, 3̃),

Z̄2
︷ ︸︸ ︷

(1̃, 4̃),

Z2
︷ ︸︸ ︷

(2̃, 3̃),

Z̄3
︷ ︸︸ ︷

(2̃, 4̃), (3.39)

AdS5 : (i, j) =

Y2, Ȳ2, Y3, Ȳ3
︷ ︸︸ ︷

(1̂, 3̂), (1̂, 4̂), (2̂, 3̂), (2̂, 4̂), (3.40)

fermionic : (i, j) =

η1, η2, η3, η4
︷ ︸︸ ︷

(1̃, 3̂), (1̂, 4̃), (2̃, 3̂), (2̂, 4̃),

θ1, θ2, θ3, θ4
︷ ︸︸ ︷

(1̂, 3̃), (1̃, 4̂), (2̂, 3̃), (2̃, 4̂) . (3.41)

So for instance a cut connecting the sheets 2̃ and 3̃ will be a perturbation inside S3 ⊂ S5

associated with the su(2) sub-sector, i.e., it will be a fluctuation with a polarisation along

Z2. Applying the KMMZ equation to the probe cut we will then have

p̃2(r) − p̃3(r) = 2πn23, n23 ∈ Z,

that translates, in the language of the su(2) sector as

2G(r;X±) − k(r)ℓ = 2πñ, ñ ∈ Z,

which coincides with Eqn (3.29).

Repeating this to all other polarisations, we get for the full S5 sector

p̃1(r) − p̃3(r) = 2πn13 ⇒ G(r;X±) − G(1/r;X±) − k(r)ℓ = 2πn13, (3.42)

p̃1(r) − p̃4(r) = 2πn14 ⇒ −2G(1/r;X±) − k(r)ℓ = 2πn14, (3.43)

p̃2(r) − p̃3(r) = 2πn23 ⇒ 2G(r;X±) − k(r)ℓ = 2πn23, (3.44)

p̃2(r) − p̃4(r) = 2πn24 ⇒ G(r;X±) − G(1/r;X±) − k(r)ℓ = 2πn24. (3.45)

For the AdS5 sector, these are trivial as expected:

k(r)ℓ = 2πn13 = 2πn14 = 2πn23 = 2πn24 .

Lastly for the fermions we have,

−G(1/r;X±) − k(r)ℓ = 2πn1̃3̂ = 2πn1̃4̂ = 2πn1̂4̃ = 2πn2̂4̃ , (3.46)

G(r;X±) − k(r)ℓ = 2πn2̃3̂ = 2πn2̃4̂ = 2πn1̂3̃ = 2πn2̂3̃ . (3.47)

where in all of these equations G(r;X±) is the SU(2) resolvent for a dyonic giant magnon

solution,

G(r;X±) =
1

i
log

(r − X+

r − X−

)

, (3.48)

and

k(r) =
2r

r2 − 1
.

Comparing these equations (3.42)–(3.47) with the periodicity equation (3.29) one can im-

mediately read off the various phase shifts:
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• For the SU(2) or S3 sub-sector:

δZ2(r;X
±) ≡ δ2̃3̃(r;X

±) = 2G(r;X±), (3.49)

δZ̄2
(r;X±) ≡ δ1̃4̃(r;X

±) = −2G(1/r;X±) . (3.50)

• For the remaining fluctuations within S5,

δZ3(r;X
±) ≡ δ1̃3̃(r;X

±) = G(r;X±) − G(1/r;X±), (3.51)

δZ̄3
(r;X±) ≡ δ2̃4̃(r;X

±) = G(r,X±) − G(1/r;X±) . (3.52)

• For AdS5,

δ1̂3̂ = δ1̂4̂ = δ2̂3̂ = δ2̂4̂ = 0 ⇔ δI(r;X
±) = 0, (3.53)

for I ∈ IAdS5 ≡ {Y2, Ȳ2, Y3, Ȳ3}

• Finally for the eight fermions I = Iθ ∪ Iη,

δ1̂3̃(r;X
±) = δ1̃4̂(r;X

±) = δ2̂3̃(r;X
±) = δ2̃4̂(r;X

±) = G(r;X±)

m
δI(r;X

±) = G(r;X±), I ∈ Iθ ≡ {θi}i=1,...,4,

(3.54)

δ1̃3̂(r;X
±) = δ1̂4̃(r;X

±) = δ2̃3̂(r;X
±) = δ2̂4̃(r;X

±) = −G(1/r;X±)

m
δI(r;X

±) = −G(1/r;X±), I ∈ Iη ≡ {ηi}i=1,...,4.

(3.55)

In the GM limit X± → x± ≡ exp(±ip/2) these simplify to







δI(r;x
±) = 0, I ∈ IAdS5,

δI(r;x
±) = −2i log

(
r−x+

r−x−

)

, I ∈ IS5,

δI(r;x
±) = −i log

(
r−x+

r−x−

)

, I ∈ Ifermions.

(3.56)

The results obtained in this section thus agree (up to a constant in the DGM momentum p)

with the results from the dressing method for the S5 sector - compare (3.49-3.52) with (3.14-

3.15) using (3.48). In the GM limit we reproduce also the phase shifts determined for the

fermions from their explicit solution (see Eqn (3.18)).

3.3 Phase shift from su(2|2) S-matrix

In this subsection, we shall consider yet another way of deriving the classical phase shifts for

the worldsheet fields in the Giant Magnon background. We will exploit a relation between

the phase shifts and a particular weak-coupling limit of the exact magnon S-matrix. In

particular, we will take the exact S-matrix for two magnons and take the Giant Magnon

limit for one of the incoming particles and the plane-wave limit for the other. In this

case the first magnon will become a semiclassical worldsheet soliton and the second an

elementary quantum corresponding to a small fluctuation of the worldsheet fields around

the soliton background. In such a limit the phase of the S-matrix goes over to the classical
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phase shift we seek. By varying the polarisations of the second magnon we can select the

phase shift corresponding to each worldsheet field. Of course our ultimate goal is to test

the exact S-matrix at one-loop order so this may sound like a circular argument. However,

the calculation of the classical phase shift discussed in this subsection relies only on the

well-tested tree-level contribution to the exact S-matrix (the AFS phase) as well as the

index structure of the S-matrix which is completely determined by supersymmetry [3].

The calculation here should be considered as a consistency check for the results obtained

from the finite-gap solution and the dressing method. One drawback is that we only know

the full S-matrix for ordinary magnons and not for their bound states.10 This means that

we can only extract the phase shifts for scattering in the background of a charge-less Giant

Magnon and not in the more general case of the Dyonic Giant Magnon described above.

On the other hand this approach does not require one to choose the polarisation of the

background or the “large magnon”, as it was the case in the previous sections, hence the

universality of the semiclassical correction θ1(x
±, y±) is more apparent.

To begin with let us recall the schematic form for the full scattering matrix for the

elementary magnons given of all sixteen possible flavors given in [3]

s(x, y) = s0(x, y)
[
ŝ(x, y) ⊗ ŝ ′(x, y)

]
, (3.57)

where the abelian factor s0(x, y) is given by

s0(x, y) =
x− − y+

x+ − y−
1 − 1/x+y−

1 − 1/x−y+
σ2(x, y) . (3.58)

The scattering matrix (3.57) was obtained by demanding its invariance under the residual

symmetry algebra psu(2|2) × psu(2|2) ⋉ R
3, and it has been shown to satisfy both unitar-

ity and Yang-Baxter equation. To recover the su(2) magnon scattering matrix in (2.16),

one simply has to fix the polarisation of the magnon and isolate the relevant component.

Moreover as argued in [3], instead of dealing with all (164) components of (3.57), we can

treat the two copies of psu(2|2)⋉ R
3 independently and only identify their central charges.

This greatly reduces the number of the components we need to deal with to 44 = 256 and

we only need to consider the su(2|2) dynamics scattering matrix ŝ(x, y).

Recall that the action of su(2|2) dynamic S-matrix ŝ(xj , xk) on a two excitation state

is schematically given by

ŝ(xj, xk)| . . .XjX ′
k . . . 〉 → (Coeff.)| . . .X ′′

k X ′′′
j . . . 〉 . (3.59)

Here an excitation Xj with spectral parameters x±
j can be any component of the 2+2 dimen-

sional fundamental representation {φ1, φ2|ψ1, ψ2} of psu(2|2) ⋉ R
3. Notice that in (3.59),

under the action of ŝ(xj, xk), the momenta/spectral parameters of the two excitations have

been swapped and their flavors are also allowed to change. As discussed before, in order to

derive the leading semiclassical correction θ1(x, y) (2.21) to the classical dressing phase, we

should consider the scattering between a fluctuation Z (or elementary magnon in the plane

10To do this, it will be necessary to apply the fusion procedure to the entire psu(2|2)2 ⋉ R
3 magnon

scattering matrix, following [8].
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wave regime) with spectral parameters z± and another arbitrary elementary magnon X

with spectral parameters x±. We can begin with the full exact expression for the magnon

scattering matrix (3.57) but only keep the lowest order θ0(z, x) in the dressing phase, which

can be readily written as:

exp(igθ0(z, x)) =
1 − 1/z−x+

1 − 1/z+x−

(
1 − 1/z−x+

1 − 1/z+x+

1 − 1/z+x−

1 − 1/z−x−

)ig(ζ−u)

. (3.60)

Here we have introduced the “rapidity parameters” ζ and u

ζ = z +
1

z
, u = x +

1

x
. (3.61)

If we further impose the plane wave limit (2.6) on z±, z+ ∼ z− = r, the scalar factor

s0(r;x) (3.58) is then simplified to

s0(r;x) =
r − x+

r − x−

r − 1/x+

r − 1/x−
. (3.62)

The su(2|2) scattering matrix ŝ(r;x) also simplifies dramatically in the limit (2.6), using

the in the notations in (C.39), the only non-vanishing components are:

a(r;x) = e(r;x) =
r − x−

r − x+

√

x−

x+
, c(r;x) = −f(r;x) = −1 . (3.63)

In fact with appropriate choice of the basis for the incoming excitations, ŝ(r;x) can be

arranged into diagonal form.

Substituting (3.62) and (3.63) into the full expression (3.57), we can the easily

obtain the scattering phase between the fluctuation Z of different polarisations and

the arbitrary magnon X. If Z belongs to one of the four bosonic scalar fluctuations

(φ1φ̃1, φ1φ̃2, φ2φ̃1, φ2φ̃2) which are identified with string worldsheet fields {Z2, Z̄2, Z3, Z̄3}
up to linear combinations (see for example [48] for more precise identifications), its scat-

tering phase with X is given by

δ(r;x±) = −i log

(
r − x+

r − x−

)

+ i log

(
r − 1/x+

r − 1/x−

)

+ p . (3.64)

If Z belongs to one of the four derivatives fluctuations (ψ1ψ̃1, ψ1ψ̃2, ψ2ψ̃1, ψ2ψ̃2) which

can be identified with {Y2, Ȳ2, Y3, Ȳ3}, its scattering phase with X is given by

δ(r;x±) = i log

(
r − x+

r − x−

)

+ i log

(
r − 1/x+

r − 1/x−

)

. (3.65)

Finally, if Z belongs to one of the eight fermionic fluctuations

(φ1ψ̃1 φ1ψ̃2, φ2ψ̃1, φ2ψ̃2, ψ1φ̃1, ψ1φ̃2, ψ2φ̃1, ψ2φ̃2) which can be identified with

{θ1, . . . , θ4; η1, . . . , η4}, its scattering phase with X given by

δ(r;x±) = i log

(
r − 1/x+

r − 1/x−

)

+
p

2
. (3.66)
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Notice that in deriving (3.64)–(3.66), we have not specify the polarisation of X; the point is

that one can sure that because of the diagonal form of the reduced su(2|2) scattering matrix,

the phase shifts derived here are in fact universal and independent of the polarisation of

X.

In general, the expressions (3.64)–(3.66) do not coincide with the exact semiclassical

phase-shifts calculated from the finite gap solution and the dressing method. This can be

explained by the fact that for example in the string sigma model, the exact phase shift was

obtained from scattering with dyonic giant magnon, which in turns correspond to the su(2)

magnon bound states. Here the approach using su(2|2) scattering matrix is only strictly

valid for the elementary magnons. To make proper comparison with the exact results from

sigma model, one should apply the similar bootstrap method used in [8] to the various

components here and construct the bound state scattering matrix. However we do expect

the results here to match when one consider X to be in the giant magnon regime (2.11),

the exact expressions for the semiclassical phase shift (3.64), (3.66) and (3.65) reduce in

such limit to

δI(r;x
±) = −2i log

(
r − x+

r − x−

)

+ p , I ∈ IS5 , (3.67)

δI(r;x
±) = −i log

(
r − x−

r − x+

)

+ i log

(
r − x−

r − x+

)

= 0 , I ∈ IAdS5 , (3.68)

δI(r;x
±) = −i log

(
r − x+

r − x−

)

+
p

2
, I ∈ Ifermions . (3.69)

Respectively, (3.67), (3.68) and (3.69) should compare with the phase shifts experienced by

giant magnon due to the scattering with the fluctuations in S5, in AdS5 and the fermionic

fluctuations; one clearly observes that the expressions (3.67)–(3.69) precisely match with

the results from the finite gap solutions and the dressing method up to linear-momentum

dependent terms.

4. The zero energy shift and the one-loop correction to the dressing phase

In this section we collect the scattering phases between magnon and fluctuation calculated

from various approaches, and apply the formulae (1.10) and (1.19). In the present context

these become (after changing variables from k to r in the integrals),

∆E(X±) =
1

2π

∑

I∈I

(−1)FI

∫ +1

−1
dr

∂δI(r;X
±)

∂r

√

k(r)2 + 1 , (4.1)

2∆Θ(X±, Y ±) =
1

2π

∑

I∈I

(−1)FI

∫ +1

−1
dr

∂δI(r;X
±)

∂r
δI(r;Y

±) (4.2)

where k(r) = 2r/(r2 − 1) and where the sums are over all possible polarisations for the

intermediate plane-waves, I = IAdS5 ∪ IS5 ∪ Ifermions. The two dyonic giant magnon are

characterised by the spectral data X±, Y ±. The factor of two on the l.h.s. of (4.2) is related

to the normalisation for the dressing phase in (3.57). We will now use these formulae to
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demonstrate the vanishing one-loop energy shift for the soliton and extract the one loop

correction to the dressing phase.

It is simple to demonstrate the vanishing energy-shift using the phase-shifts δI(r;X
±)

calculated in section 3. We then only need to show the weighted summation over δI(r;X
±)

in (4.1) vanishes up to constant r-independent terms. To perform the calculation, one first

notes that the fluctuations with a polarisation along AdS5 will not suffer a phase shift,

δI = 0, I ∈ IAdS5.

The weighted summation over the phase-shifts for the scattering of the four transverse

bosonic fluctuations in S5 and the eight fermionic fluctuations becomes,

∑

I∈I

(−1)FI δI(r;X
±) =

Z2
︷ ︸︸ ︷

2G(r;X±)−2G(1/r,X±)
︸ ︷︷ ︸

Z̄2

+

+ 2[G(r;X±) − G(1/r,X±)]
︸ ︷︷ ︸

Z3,Z̄3

−[

θ1,...,θ4
︷ ︸︸ ︷

4G(r;X±)−4G(1/r,X±)
︸ ︷︷ ︸

η1,...,η4

] = 0 . (4.3)

We then automatically obtain from (4.1) the predicted vanishing of the one-loop energy

correction for the magnon and its bound states11

∆E = 0. (4.4)

We now move on to the one-loop correction to the soliton S-matrix. We are seeking

the equality ∆Θ(X±, Y ±) = Θ1(X
±, Y ±), where Θ1(X

±, Y ±) is given as

Θ1(X
±, Y ±) = K1(X

+, Y +) − K1(X
+, Y −) − K1(X

−, Y +) − K1(X
−, Y −) . (4.5)

Our strategy here is that, instead of comparing with Θ1(X,Y ) using the expression for

K1(X,Y ) in (2.21), (2.29), we shall consider the derivatives of Θ1(X,Y ) to avoid the

issues of the branch cuts coming from the logarithms. Differentiating with respect to

V = (Y + + Y − + 1/Y + + 1/Y −)/2 we obtain,

∂Θ1(X
±, Y ±)

∂V
=

(F1(X
+, Y +) − F1(X

−, Y +))

1 − 1/(Y +)2
+

(F1(X
−, Y −) − F1(X

+, Y −))

1 − 1/(Y −)2
, (4.6)

where,

F1(X,Y ) =
∂K1(X,Y )

∂Y
=

1

π

[
1

Y − X
− 1

Y − 1/X

]

log

(
Y + 1

Y − 1

X − 1

X + 1

)

, (4.7)

and we have used the identities ∂Y ±

∂V = 1
1−1/(Y ±)2

.

11A related calculation appeared in [42]. In particular, it was noted that the range and frequencies of

the continuous spectra associated with bosonic and fermionic modes were the same. However, as we have

emphasized above, to compute the one-loop correction to the soliton energy it is also necessary to determine

the appropriate density of states for each mode. See eg [49] for an example where this point is essential.
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We shall therefore evaluate the corresponding derivative of our semiclassical result,

2
∂∆Θ(X±, Y ±)

∂V
=

1

2π

∑

I∈I

(−1)FI

∫ +1

−1
dr

∂δI (r;X
±)

∂r

∂δI(r;Y
±)

∂V
, (4.8)

using the various scattering phases δI(r;X
±) between the fluctuations and the magnon

polarized in one of the S3 ⊂ S5 calculated in the previous sections. Instead of evaluating

every terms in the weighted summation of (4.8), again the four fluctuations in AdS5 give

vanishing contributions. Moreover each of the two bosonic fluctuations parallel to the S3

will give four times of the contribution coming from each of the eight fermionic fluctuations,

therefore these contributions again cancel after taking account of the multiplicities and

weights. As the result, we only need to consider the contributions coming from the two

bosonic fluctuations transverse to the S3, i.e., δZ3(r;X
±) = δZ̄3

(r;X±) = G(r;X±) −
G(1/r;X±). The relevant derivatives are given by:

∂δZ3(r;X
±)

∂r
= i

[(
1

r − X+
− 1

r − 1/X+

)

−
(

1

r − X−
− 1

r − 1/X−

)]

, (4.9)

∂δZ3(r;Y
±)

∂V
= i

[
1

1 − 1/(Y +)2

(
1

Y + − r
− 1

Y + − 1/r

)

− 1

1 − 1/(Y −)2

(
1

Y − − r
− 1

Y − − 1/r

)]

. (4.10)

Substituting (4.9) and (4.10) into (4.8), it should be clear that it can be rearranged into

2
∂∆Θ(X±, Y ±)

∂V
= 2

[

F̃ (X+, Y +) − F̃ (X−, Y +)

1 − 1/(Y +)2
+

F̃ (X−, Y −) − F̃ (X+, Y −)

1 − 1/(Y −)2

]

, (4.11)

where the function F̃ (X,Y ) is given by

F̃ (X,Y ) =
1

2π

∫ +1

−1
dr

[
1

r − X
− 1

r − 1/X

] [
1

Y − r
− 1

Y − 1/r

]

=
1

π

[
1

Y − X
− 1

Y − 1/X

]

log

(
Y + 1

Y − 1

X + 1

X − 1

)

. (4.12)

In the second line of (4.12) we have used the integrals (D.1) and (D.2) in the appendix D,

and we obtain the exact match between F̃ (X,Y ) and F1(X,Y ) in (4.6)!

The authors would like to thank B. Vicedo and L. I. Uruchurtu for usefull discussions,

they are also grateful to K. Okamura and M. Spradlin for the comments on the draft. ND is

supported by a PPARC Senior Research Fellowship. RFLM is supported by the Fundação

para a Ciência e Tecnologia with the fellowship SFRH/BD/16030/2004.

A. Derivation for the one-loop energy-shift formula

Here we present a derivation for the semiclassical one-loop energy shift formula (4.2). Let

us consider a real scalar field ϕ(x, t) in a 1+1 dimensional field theory which contains a mass

parameter m and coupling g, we shall consider the strong coupling limit g ≫ 1 hence the
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natural expansion parameter is the inverse coupling 1/g. Now suppose the theory admits

a classical one soliton solution ϕ(x, t) ≡ ϕcl(x, t; p) where p is the conserved momentum

carried by the soliton, such solution should have the asymptotic behaviour:

ϕcl(x, t; p) ∼ exp(−c|x|) , |x| → ∞ , (A.1)

where c ≡ c(p) is the mass of the static soliton at rest. The energy of the soliton E(p, g)

should also admit the strong coupling expansion in 1/g as

E(p) = gEcl(p) + ∆E(p) + O(1/g) , (A.2)

where Ecl(p) is the classical energy, whereas ∆E(p) is the semiclassical one-loop energy

shift due to the small quantum fluctuations around the classical soliton background.

To determine ∆E(p), we first consider the standard small fluctuation operator in the

soliton theory given by

Ĥ =
δ2L(ϕ, ∂ϕ)

δϕ2(x, t) ϕ=ϕcl(x,t;p) , (A.3)

where L(ϕ, ∂ϕ) is the Lagrangian of the theory. The semiclassical energy shift ∆E(p) is

then determined by the spectrum of Ĥ; asymptotically, i.e. away from the soliton, Ĥ should

tend to quantum mechanical Hamiltonian describing the propagation of plane wave:

Ĥ → ¤ + m2 + O
(

e−c|x|
)

, |x| → ∞ , (A.4)

where ¤ = −∂2
t + ∂2

x. Hence if we consider a solution ψ(x, t) to the linearised equation of

motion, i.e. it satisfies

Ĥψ(x, t; k) = 0 , ψ(x, t; k) ∈ C . (A.5)

Asymptotically, to be consistent with (A.4), the solution ψ(x, t) should have the following

behaviour:

ψ(x, t; k) → exp(iE(k)t + ikx) , x → −∞ ,

ψ(x, t; k) → exp(iδ(k; p) + iE(k)t + ikx) , x → ∞ , (A.6)

where k is the wave vector of ψ(x, t; k) and ǫ(k) is an eigenvalue of the asymptotic Hamil-

tonian (A.4), so that E(k) =
√

k2 + m2. As it propagates from x = −∞ to x = ∞, the

fluctuation ψ(x, t; k) scatters elastically with the classical soliton ϕcl(x, t; p), the unitarity

of Ĥ demands that such scattering can only introduce an overall phase-shift δ(k; p) into

ψ(x, t; k), δ(k; p) is called the “scattering phase”.12

We now would like to derive the one-loop energy shift ∆E of the soliton due to the

presence of the fluctuation ψ(x, t; k). Instead of considering an infinite line, we now impose

periodic boundary condition on the soliton wave function ϕcl(x, t; p), i.e.

ϕcl(x, t; p) = ϕcl(x + L, t; p) , L ≫ 1 ; (A.7)

12In our analysis, we exclude the possible formation of bound states, and we assume that there is no

reflection, however they are indeed true in the case of our interests.
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as the result the fluctuation ψ(x, t; k) also acquires the periodicity:

ψ(x, t; k) = ψ(x + L, t; k) . (A.8)

Comparing (A.8) with the asymptotic condition earlier (A.6), we can deduce that the

allowed valued of wave vector kn must satisfy the condition

knL = 2πn + δ(kn; p) , n ∈ Z . (A.9)

Typically we expect that for a given wave vector k = kn, there should be an unique solution.

We can actually impose similar periodic boundary condition in the time direction on the

soliton, that is for some given time period T ,

ϕcl(x, t; p) = ϕcl(x, t + T ; p) . (A.10)

Whereas for the fluctuation ψ(x, t; k), after one period T , it picks up a phase given by

ψ(x, t + T ; k) = exp(iν(k))ψ(x, t; k) , (A.11)

where ν(k) = E(k)T =
√

k2 + m2T , the phase ν(k) is called “stability angle” in the

literature.

Essentially, the derivation for the one-loop energy-shift boils down to comparing the

stability angles in the vacuum (without the presence of soliton) and with the existence of

soliton. In the vacuum, we can write down the stability angle:

ν(k(0)
n ) = = E(k(0)

n )T =

√
(

k
(0)
n

)2
+ m2T , (A.12)

Lk(0)
n = 2πn , n ∈ Z . (A.13)

Here k
(0)
n denotes the wave vector for the plane wave propagating in the vacuum and the

equation (A.13) is simply the consequence of the periodicity in x-direction. In the soliton

background, we can again write down the stability angle for the fluctuation:

ν(kn) =
√

k2
n + m2T , (A.14)

with the wave vector kn now satisfies the periodic condition (A.9). In [14], the general

formula for the one loop energy shift such time-dependent solution is given simply as

∆EL(p) =

+∞∑

n=−∞

(
∂ν(k, T )

∂T
k=kn

− ∂ν(k, T )

∂T k=k
(0)
n

)

=
+∞∑

n=−∞

(
√

k2
n + m2 −

√
(

k
(0)
n

)2
+ m2

)

(A.15)

As we take the continuous L → ∞ limit, kn = 2πn
L +O(1/L) for high mode numbers |n| ∼ L,

simple algebra shows that E(kn) = E(k
(0)
n ) + O(1/L). In such limit, the summation over

the mode number n goes over to an integral, however we can also equivalently express it
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as integral over the wave vector k, to do so we need to write down the density of states in

the soliton background and in the vacuum defined to be:

∂n

∂k
=

L

2π
+

1

2π

∂δ(k; p)

∂k
,

∂n

∂k(0)
=

L

2π
. (A.16)

Finally we deduce the one-loop energy shift formula (A.15) goes over to

∆E(p) = lim
L→∞

[∆EL(p)] =

∫ +∞

−∞
dk

(
∂n

∂k
− ∂n

∂k(0)

)
√

k2 + m2

=
1

2π

∫ +∞

−∞
dk

∂δ(k; p)

∂k

√

k2 + m2 . (A.17)

For the case of NF decoupled real fluctuation fields ψI(x, t; k) I = 1, . . . , NF (include

bosonic and fermionic fields), the generalisation is obvious. Furthermore if they all share

the same dispersion relations as it is true for the plane wave magnon we consider in this

paper, the formula gets extra simplifications, taking into the account of opposite weighting

for the bosons and fermions, we finally derive the one loop energy shift formula (4.2):

∆E(p) =
1

2π

NF∑

I=1

(−1)FI

∫ +∞

−∞
dk

∂δI (k; p)

∂k

√

k2 + m2 , (A.18)

where δI(k; p) corresponds to the scattering phase between the I-th fluctuation and the

soliton.

B. Derivation for the one-loop phase shift formula

In this appendix we present the derivation for the formulae of one-loop corrections to the

scattering phase given in the equations (1.18) and (1.19). As in the main text, we begin

by considering a two soliton solution with momenta p1 and p2 respectively in a 1 + 1

dimensional field theory characterised by coupling constant g, this configuration can be

described by a scattering wave function ϕscat(x, t;x
(0)
1 , x

(0)
2 , p1, p2). In addition we also

impose the periodic boundary condition:

x ∼ x + L , ϕscat(x, t;x
(0)
1 , x

(0)
2 , p1, p2) ∼ ϕscat(x + L, t;x

(0)
1 , x

(0)
2 , p1, p2) L ≫ 1 , (B.1)

this also implies the energy levels of the two solitons are quantised. As the scattering

between the two solitons is elastic, the total energy of the system is given by

E(n1, n2) ≡ E(pn1 , pn2) = E(pn1) + E(pn2) , n1, n2 ∈ Z , (B.2)

Here n1 and n2 are again the mode numbers of the two solitons, E(pn1) and E(pn2) their

energies, whereas the quantised soliton momenta pn1 and pn2 are given by

pn1L = 2πn1 + Θ(pn1 , pn2) , (B.3)

pn2L = 2πn2 − Θ(pn1 , pn2) . (B.4)
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The function Θ(pn1, pn2) is the scattering phase between the two solitons, which in general

has strong expansion in 1/g as given in (1.16), and our aim here is to derive a formula

for ∆Θ(pn1, pn2). Notice that the system also has another natural expansion parameter,

namely 1/L with L ≫ 1; essentially the set-up of our derivation for ∆Θ(pn1, pn2) is to

consider the appropriate double expansions in both 1/g and 1/L for the soliton momenta

and energies pni
and E(pni

) , i = 1, 2, and apply (B.3) and (B.4) to relate and identify the

terms associated with ∆Θ(pn1, pn2).

Let us begin by expanding the two soliton momenta in 1/L while keeping g fixed, we

can then write down:

pni
= p(0)

ni
+

1

L
p(1)

ni
+ O(1/L2) , i = 1, 2 . (B.5)

If we also divide both sides of (B.3) and (B.4) and replace the momenta entering Θ(pn2, pn2)

with (B.5), we can obtain that

p(0)
n1

=
2πn1

L
∼ O(1) , p(0)

n2
=

2πn2

L
∼ O(1) , (B.6)

at the leading order and here we have assumed that the mode numbers ni to be large so

that ni/L is kept fixed; at the next leading order in 1/L expansion we identify that

p(1)
n1

= −p(1)
n2

= Θ(p(0)
n1

, p(0)
n2

) = gΘcl(p
(0)
n1

, p(0)
n2

) + ∆Θ(p(0)
n1

, p(0)
n2

) + O(1/g) , (B.7)

We can also perform a similar expansion for the total energy of the system, which we shall

write it as:

E(n1, n2) = E(0)(n1, n2) +
1

L
E(1)(n1, n2) + O(1/L2) , (B.8)

again using (B.5) we can write down

E(0)(n1, n2) = E(p(0)
n1

) + E(p(0)
n2

) , (B.9)

E(1)(n1, n2) = g
∂Ecl(pn1)

∂pn1
pn1=p

(0)
n1

× p(1)
n1

+
∂Ecl(pn2)

∂pn2
pn2=p

(0)
n2

× p(1)
n2

(B.10)

Having expanded in the 1/L for the energy, we can now perform further 1/g expansions

for (B.9) and (B.10), which are can be written as

E(0)(n1, n2) = gE
(0)
cl (n1, n2) + ∆E(0)(n1, n2) + O(1/g) , (B.11)

E(1)(n1, n2) = gE
(1)
cl (n1, n2) + ∆E(1)(n1, n2) + O(1/g) . (B.12)

Using the similar double expansion for the energy of individual soliton, we can rewrite the

various quantities in (B.11) and (B.12) as the following:

E
(0)
cl (n1, n2) = E

(0)
cl (n1) + E

(0)
cl (n2) , (B.13)

∆E(0)(n1, n2) = ∆E(0)(n1) + ∆E(0)(n2) , (B.14)

E
(1)
cl (n1, n2) = g

[
∂Ecl(pn1)

∂pn1
pn1=p

(0)
n1

− ∂Ecl(pn2)

∂pn2
pn2=p

(0)
n2

]

Θ(p(0)
n1

, p(0)
n2

) , (B.15)

∆E(1)(n1, n2) = g

[
∂Ecl(pn1)

∂pn1
pn1=p

(0)
n1

− ∂Ecl(pn2)

∂pn2
pn2=p

(0)
n2

]

∆Θ(p(0)
n1

, p(0)
n2

) . (B.16)
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In (B.16) we have used the relation (B.7) and from (B.16) we conclude that we can in fact

extract the one loop correction to the soliton scattering phase ∆Θ(p
(0)
n1 , p

(0)
n2 ) from the 1/L

expansion of the one loop energy ∆E(n1, n2)! This useful observation allows us to recycle

the idea used in deriving the one-loop energy shift for single soliton, that is to consider a

plane wave fluctuation with wave vector kn in the background of two solitons, and we can

denote the total one-loop energy shift to be:

∆E(n1, n2) =

+∞∑

n=−∞

∆En(n1, n2) , n ∈ Z , (B.17)

where n is the mode number for the plane wave fluctuation. We assume the plane wave

again scatters elastically with the two solitons, moreover the classical integrability of the

system persists here, so that the three body scattering matrix can be factorised into pair-

wise scatterings. We can therefore, at the classical level, write down the periodicity condi-

tion for the new three body system:

knL = 2πn + δ(kn, pn1) + δ(kn, pn2) , (B.18)

pn1L = 2πn1 + gΘcl(pn1, pn2) − δ(kn, pn1) , (B.19)

pn2L = 2πn2 − gΘcl(pn1, pn2) − δ(kn, pn1) , (B.20)

where δ(kn, pn1) and δ(kn, pn2) are the scattering phases between the plane wave and the

first and second soliton respectively. The 1/L expansion in this system yields the expression

for kn

kn = k(0)
n +

1

L
k(1)

n + O(1/L2) , (B.21)

and we can use the similar arguments for obtaining (B.6) and (B.7) to deduce in this three

body case:

k(0)
n =

2πn

L
, p(0)

n1
=

2πn1

L
, p(0)

n2
=

2πn2

L
, (B.22)

k(1)
n = δ(k(0)

n , p(0)
n1

) + δ(k(0)
n , p(0)

n2
) , (B.23)

p(1)
n1

= gΘcl(pn1 , pn2) − δ(k(0)
n , pn1) , (B.24)

p(1)
n2

= −gΘcl(pn1 , pn2) − δ(k(0)
n , pn2) . (B.25)

Here in writing out pn1 and pn2 we have not used p
(0)
n1 and p

(0)
n2 , the point is that we will

eventually take the L → ∞ limit, the distinction between them vanish. However for kn

and k
(0)
n , as we will sum over all infinite mode numbers −∞ < n < +∞ and we expect the

summation to go over the integral in the continuous limit, we should therefore be careful

with the difference even in such limit. Finally using above, we can write down the 1/L
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expansion for the total energy En(n1, n2) of this three body system as

En(n1, n2) =

[

gEcl(p
(0)
n1

) + gEcl(p
(0)
n2

) +

√

(k
(0)
n )2 + m2

]

(B.26)

+
g

L

[
∂Ecl(pn1)

∂pn1
pn1=p

(0)
n1

× p(1)
n1

+
∂Ecl(pn2)

∂pn2
pn2=p

(0)
n2

× p(1)
n2

]

+
√

k2
n + m2 −

√

(k
(0)
n )2 + m2

− g

L

[
∂Ecl(pn1)

∂pn1
pn1=p

(0)
n1

(

δ(kn, pn1) − δ(k(0)
n , pn1)

)

+
∂Ecl(pn2)

∂pn2
pn2=p

(0)
n2

(

δ(kn, pn2) − δ(k(0)
n , pn2)

) ]

.

The one-loop energy shift for the two solitons due to the plane wave of wave vector kn are

contained within the last two lines of (B.26), summing over all mode numbers, the total

one-loop energy shift due the plane wave is then given by

∆E(n1, n2) =

+∞∑

n=−∞

[
√

k2
n + m2 −

√

(k
(0)
n )2 + m2

]

(B.27)

− g

L

+∞∑

n=−∞

[
∂Ecl(pn1)

∂pn1
pn1=p

(0)
n1

(

δ(kn, pn1) − δ(k(0)
n , pn1)

)

+
∂Ecl(pn2)

∂pn2
pn2=p

(0)
n2

(

δ(kn, pn2) − δ(k(0)
n , pn2)

) ]

.

If we compare (B.27) with the 1/L expansion of ∆E(n1, n2) (B.17):

∆E(n1, n2) = ∆E(0)(n1, n2) +
1

L
∆E(1)(n1, n2) + O(1/L2) , (B.28)

as well as apply the explicit expressions (B.14) and (B.16), we can therefore deduce that

in the L → ∞ limit

∆E(n1, n2) = lim
L→∞

+∞∑

n=−∞

[
√

k2
n + m2 −

√

(k
(0)
n )2 + m2

]

, (B.29)

∆Θ(p1, p2) = lim
L→∞

+∞∑

n=−∞

[

−δ(kn, pn1) + δ(k(0)
n , pn1)

]

, (B.30)

∆Θ(p1, p2) = lim
L→∞

+∞∑

n=−∞

[

δ(kn, pn2) − δ(k(0)
n , pn2)

]

. (B.31)

The second and third lines above can be calculated independently and used as a consistency

check.

To obtain the integral expressions for (B.29)–(B.31), we can recycle the arguments in

section A and write down the density of states in this case

∂n

∂k
=

L

2π
+

1

2π

∂δ(k, p1)

∂k
+

1

2π

∂δ(k, p2)

∂k
,

∂n

∂k(0)
=

L

2π
. (B.32)
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Finally plugging in the expressions in (B.32), we can rewrite (B.29) into

∆E(n1, n2) = lim
L→∞

+∞∑

n=−∞

[
√

k2
n + m2 −

√

(k
(0)
n )2 + m2

]

=
1

2π

∫ +∞

−∞
dk

(
∂δ(k, p1)

∂k
+

∂δ(k, p2)

∂k

)
√

k2 + m2

= ∆E(p1) + ∆E(p2) . (B.33)

In this last line of (B.33) we have used the one-loop energy shift formula for single soliton

we derived earlier (A.17). Moreover we can use (B.32) to rewrite

∆Θ(p1, p2) = lim
L→∞

+∞∑

n=−∞

[

−δ(kn, pn1) + δ(k(0)
n , pn1)

]

= − 1

2π

∫ +∞

−∞
dk

(
∂δ(k, p1)

∂k
+

∂δ(k, p2)

∂k

)

δ(k, p1)

= − 1

2π

∫ +∞

−∞
dk

[
1

2

∂

∂k

[
δ2(k, p1)

]
+

∂

∂k
[δ(k, p1)δ(k, p2)] −

∂δ(k, p1)

∂k
δ(k, p2)

]

=
1

2π

∫ +∞

−∞
dk

∂δ(k, p1)

∂k
δ(k, p2) (B.34)

In the third line of (B.34), we have discarded the total derivative terms; we can also perform

similar calculation for (B.31) and show that it is identical to (B.34). In either case, they

are indeed the one loop phase shift for the fluctuation of single flavor given in (1.18). For

the generalisation, we can consider plane wave fluctuations of different flavors and both

bosonic and fermionic, all of them share the same same dispersion relations, we can at last

write down the generalised scattering one-loop scattering phase shift:

∆Θ(p1, p2) =
1

2π

NF∑

I=1

(−1)FI

∫ +∞

−∞
dk

∂δI(k, p1)

∂k
δI(k, p2) , (B.35)

which was stated and used in the main text (c.f. (1.19)) and this completes our derivation.

C. Calculation details for the dressing method

In this appendix we present the calculations for the phase shifts suffered by a plane-wave

fluctuation as it scatters a N -soliton DGM string solution lying inside a S3 subspace of the

S5 using dressing method. The key equation for deriving the asymptotics of the plane-wave

solution δgN is given by:

δgN

∣
∣
∣
x→±∞

= −2i sin
(q

2

)(

PN+1[w̃] + QN+1[w̃]
)∣
∣
∣
η̃=0,x→±∞

gN

∣
∣
∣
x→±∞

, (C.1)

where w̃ is the polarisation vector of the perturbation, q the perturbation momentum and

gN the N -soliton background solution. We thus have to determine the asymptotics for

both the N -soliton solution and for the projectors PN+1|η̃=0,QN+1|η̃=0.
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Taking the asymptotic limit x → ±∞ simplifies the calculation greatly, since we find

that

P1|±∞ ≈
(

PSU(2)
1 |±∞ 0

0 0

)

, Q1|±∞ ≈
(

0 0

0 PSU(2)
1 |±∞

)

, (C.2)

where PSU(2)
1 |+∞ ≈

(

0 0

0 1

)

and PSU(2)
1 |−∞ ≈

(

1 0

0 0

)

are the asymptotic limits of the

projector of the SU(2) closed sector and that

PN |±∞ = P1|±∞, QN |±∞ = Q1|±∞, (C.3)

when all N -solitons have the same polarisation wN = · · · = w1 = (i, 1, 0, 0).

The N -soliton solution can then be reconstructed from Ψ0, and written in the following

factorised form:

ΨN (X) = χN (X)χN−1(X) · · · χ1(X)Ψ0(X),

with

χk(X) = 1 +
Xk − X̄k

X − Xk
Pk[wk] +

1/X̄1 − 1/Xk

X − 1/X̄k
Qk[wk].

In particular we will have

χk(X)|+∞ ≈










1 0 0 0

0
X−X−

k

X−X+
k

0 0

0 0 1 0

0 0 0
X−1/X+

k

X−1/X−

k










, χk(X)|−∞ ≈










X−X−

k

X−X+
k

0 0 0

0 1 0 0

0 0
X−1/X+

k

X−1/X−

k

0

0 0 0 1










(C.4)

and so that

ΨN (X)
∣
∣
∣
+∞

≈ diag

(

eiZ(X) ,

N∏

k=1

X − X−
k

X − X+
k

e−iZ(X) , eiZ(X) ,

N∏

k=1

X − 1/X+
k

X − 1/X−
k

e−iZ(X)

)

,

(C.5)

ΨN (X)
∣
∣
∣
−∞

≈ diag

(
N∏

k=1

X − X−
k

X − X+
k

eiZ(X) , e−iZ(X) ,
N∏

k=1

X − 1/X+
k

X − 1/X−
k

eiZ(X) , e−iZ(X)

)

.

(C.6)

For real X = X̄ = r one gets

ΨN (r)
∣
∣
∣
+∞

≈ diag

(

ei v
2 ,

N∏

k=1

r − X−
k

r − X+
k

e−i v
2 , ei v

2 ,

N∏

k=1

r − 1/X+
k

r − 1/X−
k

e−i v
2

)

, (C.7)

ΨN (r)
∣
∣
∣
−∞

≈ diag

(
N∏

k=1

r − X−
k

r − X+
k

ei v
2 , e−i v

2 ,
N∏

k=1

r − 1/X+
k

r − 1/X−
k

ei v
2 , e−i v

2

)

, (C.8)

where

v ≡ Z(X) + Z̄(X) = 2Z(r) = ωt − kx,
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with ω =
√

k2 + 1 and k = 2r/(1 − r2). If we have taken X = X̄ = 1/r, we would get an

identical set of expressions but with k → −k (and with r → 1/r).

If one takes X = 0 in (C.5) and (C.6), they reduce to

gN |+∞ = diag
(

eit, e−it−iP , eit, e−it−iP
)

, (C.9)

gN |−∞ = diag
(

eit−iP , e−it, eit−iP , e−it
)

, (C.10)

where
∑N

k=1 pk = P is the total momentum. We can always re-scale gN by ei P
2 to get a

more symmetrical expression,

gN |+∞ = diag
(

eit+i P
2 , e−it−i P

2 , eit+i P
2 , e−it−i P

2

)

, (C.11)

gN |−∞ = diag
(

eit−i P
2 , e−it+i P

2 , eit−i P
2 , e−it+i P

2

)

. (C.12)

What remains is to determine the asymptotic limits of the η-linearised projectors

PN+1[w̃] and QN+1[w̃]. These involve ΨN(r)|±∞ and ΨN (1/r)|±∞ respectively, which

can be expressed in terms of the asymptotic limits of Ψ0(r) and Ψ0(1/r) by applying the

dressing method iteratively, using the simplified expressions (C.2), (C.3) for the lower order

projectors that we have found out. Explicitly we have

PN+1[w̃]
∣
∣
∣
±∞

= ΨN (r)
∣
∣
∣
±∞

WP [w̃] Ψ̄N (r)
∣
∣
∣
±∞

, (C.13)

QN+1[w̃]
∣
∣
∣
±∞

= ΨN (1/r)
∣
∣
∣
±∞

WQ[w̃]Ψ̄N (1/r)
∣
∣
∣
±∞

. (C.14)

where

WP [w̃] =
w̃ ⊗ w̃†

w̃ · w̃†
and WQ[w̃] = J

¯̃w ⊗ w̃T

¯̃w · w̃T
J−1.

From (C.1), (C.7-C.8) and (C.13-C.14) one can easily determine the phase shifts for a given

polarisation w̃. The result is that the phase shifts will always be additive, as expected from

the factorisable of the system: The total phase shift experienced by a plane-wave scattering

off a N -soliton background is equal to the sum of the individual phase shifts caused by the

scattering between a plane wave and each constituent soliton.

For the two polarisation types that we are considering, we have

W
‖
P ≡ WP [w̃‖] =

1

2








1 i 0 0

−i 1 0 0

0 0 0 0

0 0 0 0








, W
‖
Q ≡ WQ[w̃‖] =

1

2








0 0 0 0

0 0 0 0

0 0 1 i

0 0 −i 1








,

W⊥
P ≡ WP [w̃⊥] =

1

2








1 0 0 i

0 0 0 0

0 0 0 0

−i 0 0 1








, W⊥
Q ≡ WQ[w̃⊥] =

1

2








0 0 0 0

0 1 i 0

0 −i 1 0

0 0 0 0








. (C.15)
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This will give for w̃ = w̃‖,

δZ1

∣
∣
∣
+∞

= −i sin
(p

2

)

eiv/2, δZ1

∣
∣
∣
−∞

= −i sin
(p

2

)

e−iP eiv/2, (C.16)

δZ2

∣
∣
∣
+∞

= sin
(p

2

)

e−iP eiv/2
N∏

j=1

r − X+
j

r − X−
j

, δZ2

∣
∣
∣
−∞

= sin
(p

2

)

eiv/2
N∏

j=1

r − X−
j

r − X+
j

, (C.17)

δZ3

∣
∣
∣
+∞

= δZ3

∣
∣
∣
−∞

= 0, (C.18)

where P =
∑N

j=1 pj is the total dyonic giant magnons momentum. For w̃ = w̃⊥ we get,

δZ1

∣
∣
∣
+∞

= −i sin
(p

2

)

eiv/2, δZ1

∣
∣
∣
−∞

= −i sin
(p

2

)

e−iP eiv/2, (C.19)

δZ2

∣
∣
∣
+∞

= δZ2

∣
∣
∣
−∞

= 0, (C.20)

δZ3

∣
∣
∣
+∞

= sin
(p

2

)

eiv
N∏

j=1

1/r − X−
j

1/r − X+
j

, δZ3

∣
∣
∣
−∞

= sin
(p

2

)

eiv
N∏

j=1

r − X+
j

r − X−
j

, (C.21)

Here we list the resultant phase shifts constructed from dressing method for the scat-

tering between a plane wave and a general N -soliton configuration lying within a given

S3 ⊂ S5, parameterised by |Z1|2 + |Z2|2 = 1. For the plane wave perturbations that are

parallel to the S3 subspace, with polarisation vector w̃‖ = (i, 1, 0, 0)T , we obtain

δZ1, δZ̄1 : δ1

(

r; {X±
j }

)

= −δ1̄

(

1/r, {X±
j }

)

= P, (C.22)

δZ2, δZ̄2 : δ2

(

r; {X±
j }

)

= −δ2̄

(

1/r, {X±
j }

)

= −2i

N∑

j=1

log

(

r − X+
j

r − X−
j

)

− P, (C.23)

δZ3, δZ̄3 : δ3

(

r; {X±
j }

)

= −δ3̄

(

1/r, {X±
j }

)

= 0. (C.24)

If we take the giant magnon limit on the N -solitons X±
j → x±

j ≡ e±ipj/2 the expressions

above reduce to,

δZ1, δZ̄1 : δ1 (r; {xj}) = −δ1̄

(

1/r, {x±
j }

)

= P, (C.25)

δZ2, δZ̄2 : δ2(r; {x±
j }) = −δ2̄(1/r, {x±

j }) = −2i

N∑

j=1

log

(

r − x+
j

r − x−

)

− P, (C.26)

δZ3, δZ̄3 : δ3

(

r; {x±
j }

)

= −δ3̄

(

1/r, {x±
j }

)

= 0. (C.27)

For the perturbations that are transverse to the S3 but within S5, with the polarisation
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vector w̃⊥ = (i, 0, 0, 1)T , we obtain

δZ1, δZ̄1 : δ1

(

r; {X±
j }

)

= −δ1̄

(

1/r, {X±
j }

)

= P, (C.28)

δZ2, δZ̄2 : δ2

(

r; {X±
j }

)

= −δ2̄

(

1/r, {X±
j }

)

= 0, (C.29)

δZ3, δZ̄3 : δ3

(

r; {X±
j }

)

= −δ3̄

(

1/r, {X±
j }

)

= −i
N∑

j=1

log

(

r − X+
j

r − X−
j

)

(C.30)

− i

N∑

j=1

log

(

1/r − X−
j

1/r − X+
j

)

.

Notice that δ3(r; {X±
j }) = δ3̄(r; {X±

j }) for this polarisation. In the giant magnon limit

these expressions again reduce to,

δZ1, δZ̄1 : δ1

(

r; {x±
j }

)

= −δ1̄

(

1/r; {x±
j }

)

= P, (C.31)

δZ2, δZ̄2 : δ2

(

r; {x±
j }

)

= −δ2̄

(

1/r; {x±
j }

)

= 0, (C.32)

δZ3, δZ̄3 : δ3

(

r; {x±
j }

)

= −δ3̄

(

1/r, {x±
j }

)

= −2i

N∑

j=1

log

(
r − x+

r − x−

)

− P. (C.33)

For the main calculation of this paper, only the non-trivial phase-shifts will be impor-

tant. We present them again in a more convenient notation. A perturbation with w̃ ≡ w‖

will correspond, as it was said, to a plane-wave travelling in a direction parallel to the direc-

tion where the background solitons are moving, i.e, in Z2 and Z̄2. Only in these directions

we will have a non-trivial phase shift from the scattering for this particular polarisation

w̃ = w‖. Hence we will label these by δZ2 and δZ̄2
to refer to a plane-wave travelling along

these directions. In the same fashion, for a perturbation with w̃ ≡ w⊥ the scattering will

occur in the perpendicular directions Z3 and Z̄3 to the moving solitons, and so the phase

shifts will be represented by δZ3 , δZ̄3
.

δZ2

(

r; {X±
j }

)

= −δZ̄2

(

1/r, {X±
j }

)

= −2i
N∑

j=1

log

(

r − X+
j

r − X−
j

)

− P, (C.34)

δZ3

(

r; {X±
j }

)

= δZ̄3

(

r; {X±
j }

)

= −i

N∑

j=1

log

(

r − X+
j

r − X−
j

)

− i

N∑

j=1

log

(

1/r − X−
j

1/r − X+
j

)

.

(C.35)

In the GM limit X±
j ≈ exp(±ipj/2) these take the form,

δZ2(r; {x±
j }) = −δZ̄2

(1/r; {x±
j }) = −2i

N∑

j=1

log

(
r − x+

r − x−

)

− P, (C.36)

δZ3

(

r; {x±
j }

)

= δZ̄3

(

r; {x±
j }

)

= −2i
N∑

j=1

log

(
r − x+

r − x−

)

− P. (C.37)
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C.1 The explicit su(2|2) S-matrix

Here we write out the explicit form for the su(2|2) dynamic S-matrix entering in (3.57),

following the notations used in [47] (See also [48])

ŝ(x, y) = a(x, y)(E1
1 ⊗ E1

1 ′ + E2
2 ⊗ E2

2 ′ + E1
1 ⊗ E2

2 ′ + E2
2 ⊗ E1

1 ′)
+b(x, y)(E1

1 ⊗ E2
2 ′ + E2

2 ⊗ E1
1 ′ − E2

1 ⊗ E1
2 ′ − E1

2 ⊗ E1
2 ′)

+c(x, y)(E3
3 ⊗ E3

3 ′ + E4
4 ⊗ E4

4 ′ + E3
3 ⊗ E4

4 ′ + E4
4 ⊗ E3

3 ′)
+d(x, y)(E3

3 ⊗ E4
4 ′ + E4

4 ⊗ E3
3 ′ − E3

4 ⊗ E4
3 ′ − E4

3 ⊗ E3
4 ′)

+e(x, y)(E1
1 ⊗ E3

3 ′ + E1
1 ⊗ E4

4 ′ + E2
2 ⊗ E4

4 ′ + E2
2 ⊗ E4

4 ′)
+f(x, y)(E3

3 ⊗ E1
1 ′ + E4

4 ⊗ E1
1 ′ + E3

3 ⊗ E2
2 ′ + E4

4 ⊗ E2
2 ′)

+g(x, y)(E4
1 ⊗ E3

2 ′ + E3
2 ⊗ E4

1 ′ − E4
2 ⊗ E3

1 ′ − E3
1 ⊗ E4

2 ′)
+h(x, y)(E2

3 ⊗ E1
4 ′ + E1

4 ⊗ E2
3 ′ − E2

4 ⊗ E1
3 ′ − E1

3 ⊗ E2
4 ′)

+k(x, y)(E1
3 ⊗ E3

1 ′ + E1
4 ⊗ E4

1 ′ + E3
2 ⊗ E3

2 ′ + E2
4 ⊗ E4

2 ′)
+l(x, y)(E1

3 ⊗ E3
1 ′ + E1

4 ⊗ E4
1 ′ + E2

3 ⊗ E3
2 ′ + E2

4 ⊗ E4
2 ′) . (C.38)

The various components in (C.38) for two magnons with spectral parameters x± and y±

are given by

a(x, y) =
x+ − y−

x− − y+

ηyηx

η̃yη̃x
,

b(x, y) =
(y− − y+)(x− − x+)(y+ + x+)

(x+ − y−)(y−x− − y+x+)

ηxηy

η̃xη̃y
,

c(x, y) = −1 ,

d(x, y) =
(y− − y+)(x− − x+)(y+ + x+)

(y− − x+)(y−x− − y+x+)
,

e(x, y) =
y− − x−

y+ − x−

ηx

η̃x
,

f(x, y) =
x+ − y+

x− − y+

ηy

η̃y
,

g(x, y) = i
(y− − y+)(x− − x+)(x+ − y+)

(x+ − y−)(y−x− − y+x+)η̃y η̃x
,

h(x, y) = i
y−x−

y+x+

(y− − y+)(x− − x+)(x+ − y+)

ηyηx(y− − x+)(1 − y−x−)
,

k(x, y) =
x+ − x−

x− − y+

ηy

η̃x
,

l(x, y) =
y+ − y−

x− − y+

ηx

η̃y
. (C.39)

The functions ηx, ηy, η̃x and η̃y are used to account for the difference between the
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“gauge/spin-chain” and the “string” basis:

Gauge : ηx = η̃x =
√

i(x− − x+) , ηy = η̃y =
√

i(y− − y+) ; (C.40)

String : ηx = η̃x

√

y+

y−
=

√

i(x−−x+)
y+

y−
, ηy = η̃y

√

x−

x+
=

√

i(y−−y+)
x−

x+
. (C.41)

Essentially, if we choose the gauge basis (C.40), the components in (C.39) are the same as

the ones in [3]). However as we would like to compare the semiclassical phase shifts with

the results obtained from the string sigma model calculations, it is in fact necessary for us

to select the string basis (C.41) to obtain the exact matches.

D. Useful integrals for the evaluation of semiclassical phase

Here we list the useful integrals for evaluating the semiclassical phase, using the for-

mula (4.2):

∫ +1

−1
dr

1

r − a

1

r − b
=

1

a − b

[

log

(
a − 1

a + 1

)

− log

(
b − 1

b + 1

)]

, (D.1)

∫ +

−1
dr

1

r − a

1

b − 1/r
=

1

b − 1/a
log

(
a − 1

a + 1

)

− 1

b(ab − 1)
log

(
1 − b

1 + b

)

. (D.2)

References

[1] M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054

[hep-th/0412188].

[2] N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansaetze for gauge theory and

strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190].

[3] N. Beisert, The SU(2|2) dynamic S-matrix, hep-th/0511082.

[4] N. Beisert, The analytic Bethe ansatz for a chain with centrally extended SU(2|2) symmetry,

J. Stat. Mech. (2007) P01017 [nlin.SI/0610017].

[5] D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 1309

[hep-th/0604135].

[6] R. Hernandez and E. Lopez, Quantum corrections to the string Bethe ansatz, JHEP 07

(2006) 004 [hep-th/0603204].

[7] L. Freyhult and C. Kristjansen, A universality test of the quantum string Bethe ansatz, Phys.

Lett. B 638 (2006) 258 [hep-th/0604069].

[8] H.-Y. Chen, N. Dorey and K. Okamura, On the scattering of magnon boundstates, JHEP 11

(2006) 035 [hep-th/0608047].

[9] R. Roiban, Magnon bound-state scattering in gauge and string theory, JHEP 04 (2007) 048

[hep-th/0608049].

[10] N. Gromov and P. Vieira, The AdS5 × S5 superstring quantum spectrum from the algebraic

curve, hep-th/0703191.

[11] N. Gromov and P. Vieira, Constructing the AdS/CFT dressing factor, hep-th/0703266.

– 41 –

http://jhep.sissa.it/stdsearch?paper=05%282005%29054
http://arxiv.org/abs/hep-th/0412188
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB727%2C1
http://arxiv.org/abs/hep-th/0504190
http://arxiv.org/abs/hep-th/0511082
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0701%2CP017
http://arxiv.org/abs/nlin/0610017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C1309
http://arxiv.org/abs/hep-th/0604135
http://jhep.sissa.it/stdsearch?paper=07%282006%29004
http://jhep.sissa.it/stdsearch?paper=07%282006%29004
http://arxiv.org/abs/hep-th/0603204
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB638%2C258
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB638%2C258
http://arxiv.org/abs/hep-th/0604069
http://jhep.sissa.it/stdsearch?paper=11%282006%29035
http://jhep.sissa.it/stdsearch?paper=11%282006%29035
http://arxiv.org/abs/hep-th/0608047
http://jhep.sissa.it/stdsearch?paper=04%282007%29048
http://arxiv.org/abs/hep-th/0608049
http://arxiv.org/abs/hep-th/0703191
http://arxiv.org/abs/hep-th/0703266


J
H
E
P
0
9
(
2
0
0
7
)
1
0
6

[12] S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS5 × S5,

JHEP 06 (2002) 007 [hep-th/0204226];

N. Beisert, A.A. Tseytlin and K. Zarembo, Matching quantum strings to quantum spins:

one-loop vs. finite-size corrections, Nucl. Phys. B 715 (2005) 190 [hep-th/0502173];

R. Hernandez, E. Lopez, A. Perianez and G. Sierra, Finite size effects in ferromagnetic spin

chains and quantum corrections to classical strings, JHEP 06 (2005) 011 [hep-th/0502188];

I.Y. Park, A. Tirziu and A.A. Tseytlin, Spinning strings in AdS5 × S5: one-loop correction to

energy in SL(2) sector, JHEP 03 (2005) 013 [hep-th/0501203];

N. Beisert and A.A. Tseytlin, On quantum corrections to spinning strings and Bethe

equations, Phys. Lett. B 629 (2005) 102 [hep-th/0509084].

[13] S. Schafer-Nameki, M. Zamaklar and K. Zarembo, Quantum corrections to spinning strings in

AdS5 × S5 and Bethe ansatz: a comparative study, JHEP 09 (2005) 051 [hep-th/0507189];

S. Schafer-Nameki, Exact expressions for quantum corrections to spinning strings, Phys. Lett.

B 639 (2006) 571 [hep-th/0602214];

S. Schafer-Nameki, M. Zamaklar and K. Zarembo, How accurate is the quantum string Bethe

ansatz?, JHEP 12 (2006) 020 [hep-th/0610250].

[14] R.F. Dashen, B. Hasslacher and A. Neveu, The particle spectrum in model field theories from

semiclassical functional integral techniques, Phys. Rev. D 11 (1975) 3424.

[15] L.D. Faddeev and V.E. Korepin, Quantum theory of solitons: preliminary version, Phys.

Rept. 42 (1978) 1.

[16] R. Rajaraman, Some nonperturbative semiclassical methods in quantum field theory: a

pedagogical review, Phys. Rept. 21 (1975) 227.

[17] R. Jackiw and G. Woo, Semiclassical scattering of quantized nonlinear waves, Phys. Rev. D

12 (1975) 1643.

[18] M. Spradlin and A. Volovich, Dressing the giant magnon, JHEP 10 (2006) 012

[hep-th/0607009].

[19] C. Kalousios, M. Spradlin and A. Volovich, Dressing the giant magnon. II, JHEP 03 (2007)

020 [hep-th/0611033].

[20] V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical/quantum integrability

in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207].

[21] N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, The algebraic curve of classical

superstrings on AdS5 × S5, Commun. Math. Phys. 263 (2006) 659 [hep-th/0502226].

[22] N. Dorey, Magnon bound states and the AdS/CFT correspondence, J. Phys. A 39 (2006)

1311 [hep-th/0604175].

[23] H.-Y. Chen, N. Dorey and K. Okamura, The asymptotic spectrum of the N = 4 super

Yang-Mills spin chain, JHEP 03 (2007) 005 [hep-th/0610295].

[24] N. Dorey, D.M. Hofman and J. Maldacena, On the singularities of the magnon S-matrix,

Phys. Rev. D 76 (2007) 025011 [hep-th/0703104].

[25] D. Berenstein, J.M. Maldacena and H. Nastase, Strings in flat space and pp waves from

N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021].

[26] J. Maldacena and I. Swanson, Connecting giant magnons to the pp-wave: an interpolating

limit of AdS5 × S5, Phys. Rev. D 76 (2007) 026002 [hep-th/0612079].

– 42 –

http://jhep.sissa.it/stdsearch?paper=06%282002%29007
http://arxiv.org/abs/hep-th/0204226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB715%2C190
http://arxiv.org/abs/hep-th/0502173
http://jhep.sissa.it/stdsearch?paper=06%282005%29011
http://arxiv.org/abs/hep-th/0502188
http://jhep.sissa.it/stdsearch?paper=03%282005%29013
http://arxiv.org/abs/hep-th/0501203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB629%2C102
http://arxiv.org/abs/hep-th/0509084
http://jhep.sissa.it/stdsearch?paper=09%282005%29051
http://arxiv.org/abs/hep-th/0507189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB639%2C571
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB639%2C571
http://arxiv.org/abs/hep-th/0602214
http://jhep.sissa.it/stdsearch?paper=12%282006%29020
http://arxiv.org/abs/hep-th/0610250
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD11%2C3424
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C42%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C42%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C21%2C227
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD12%2C1643
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD12%2C1643
http://jhep.sissa.it/stdsearch?paper=10%282006%29012
http://arxiv.org/abs/hep-th/0607009
http://jhep.sissa.it/stdsearch?paper=03%282007%29020
http://jhep.sissa.it/stdsearch?paper=03%282007%29020
http://arxiv.org/abs/hep-th/0611033
http://jhep.sissa.it/stdsearch?paper=05%282004%29024
http://arxiv.org/abs/hep-th/0402207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C263%2C659
http://arxiv.org/abs/hep-th/0502226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C1311
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C1311
http://arxiv.org/abs/hep-th/0604175
http://jhep.sissa.it/stdsearch?paper=03%282007%29005
http://arxiv.org/abs/hep-th/0610295
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C025011
http://arxiv.org/abs/hep-th/0703104
http://jhep.sissa.it/stdsearch?paper=04%282002%29013
http://arxiv.org/abs/hep-th/0202021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C026002
http://arxiv.org/abs/hep-th/0612079


J
H
E
P
0
9
(
2
0
0
7
)
1
0
6

[27] H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024

[hep-th/0605155].

[28] G. Arutyunov, S. Frolov and M. Zamaklar, Finite-size effects from giant magnons, Nucl.

Phys. B 778 (2007) 1 [hep-th/0606126].

[29] N. Beisert, V. Dippel and M. Staudacher, A novel long range spin chain and planar N = 4

super Yang-Mills, JHEP 07 (2004) 075 [hep-th/0405001].

[30] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.

(2007) P01021 [hep-th/0610251].

[31] N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS5 × S5 strings,

JHEP 11 (2006) 070 [hep-th/0609044].

[32] R.A. Janik, The AdS5 × S5 superstring worldsheet S-matrix and crossing symmetry, Phys.

Rev. D 73 (2006) 086006 [hep-th/0603038].

[33] A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric

gauge theory, Nucl. Phys. B 661 (2003) 19 [Erratum ibid. 685 (2004) 405] [hep-ph/0208220].

[34] A.V. Kotikov and L.N. Lipatov, On the highest transcendentality in N = 4 SUSY, Nucl.

Phys. B 769 (2007) 217 [hep-th/0611204].

[35] B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. (2006) P11014

[hep-th/0603157].

[36] G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10

(2004) 016 [hep-th/0406256].

[37] G. Arutyunov and S. Frolov, On AdS5 × S5 string S-matrix, Phys. Lett. B 639 (2006) 378

[hep-th/0604043].

[38] R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS5 × S5 background,

Nucl. Phys. B 533 (1998) 109 [hep-th/9805028].

[39] R.R. Metsaev and A.A. Tseytlin, Superstring action in AdS5 × S5: Kappa-symmetry light

cone gauge, Phys. Rev. D 63 (2001) 046002 [hep-th/0007036].

[40] R.R. Metsaev and A.A. Tseytlin, Exactly solvable model of superstring in plane wave

Ramond-Ramond background, Phys. Rev. D 65 (2002) 126004 [hep-th/0202109].

[41] O. Babelon, D. Bernard and M. Talon, Introduction to classical integrable systems,

Cambridge Univ. Pr., Cambridge, U.K. (2003).

[42] G. Papathanasiou and M. Spradlin, Semiclassical quantization of the giant magnon,

arXiv:0704.2389.

[43] J.A. Minahan, Zero modes for the giant magnon, JHEP 02 (2007) 048 [hep-th/0701005].

[44] J.A. Minahan, A. Tirziu and A.A. Tseytlin, Infinite spin limit of semiclassical string states,

JHEP 08 (2006) 049 [hep-th/0606145].

[45] K. Okamura and R. Suzuki, A perspective on classical strings from complex sine-gordon

solitons, Phys. Rev. D 75 (2007) 046001 [hep-th/0609026].

[46] B. Vicedo, Giant magnons and singular curves, hep-th/0703180.

[47] G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for

AdS5 × S5 superstring, JHEP 04 (2007) 002 [hep-th/0612229].

– 43 –

http://jhep.sissa.it/stdsearch?paper=09%282006%29024
http://arxiv.org/abs/hep-th/0605155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB778%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB778%2C1
http://arxiv.org/abs/hep-th/0606126
http://jhep.sissa.it/stdsearch?paper=07%282004%29075
http://arxiv.org/abs/hep-th/0405001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0701%2CP021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0701%2CP021
http://arxiv.org/abs/hep-th/0610251
http://jhep.sissa.it/stdsearch?paper=11%282006%29070
http://arxiv.org/abs/hep-th/0609044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C086006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C086006
http://arxiv.org/abs/hep-th/0603038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB661%2C19
http://arxiv.org/abs/hep-ph/0208220
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB769%2C217
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB769%2C217
http://arxiv.org/abs/hep-th/0611204
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0611%2CP014
http://arxiv.org/abs/hep-th/0603157
http://jhep.sissa.it/stdsearch?paper=10%282004%29016
http://jhep.sissa.it/stdsearch?paper=10%282004%29016
http://arxiv.org/abs/hep-th/0406256
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB639%2C378
http://arxiv.org/abs/hep-th/0604043
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB533%2C109
http://arxiv.org/abs/hep-th/9805028
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C046002
http://arxiv.org/abs/hep-th/0007036
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C126004
http://arxiv.org/abs/hep-th/0202109
http://arxiv.org/abs/0704.2389
http://jhep.sissa.it/stdsearch?paper=02%282007%29048
http://arxiv.org/abs/hep-th/0701005
http://jhep.sissa.it/stdsearch?paper=08%282006%29049
http://arxiv.org/abs/hep-th/0606145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C046001
http://arxiv.org/abs/hep-th/0609026
http://arxiv.org/abs/hep-th/0703180
http://jhep.sissa.it/stdsearch?paper=04%282007%29002
http://arxiv.org/abs/hep-th/0612229


J
H
E
P
0
9
(
2
0
0
7
)
1
0
6

[48] T. Klose, T. McLoughlin, R. Roiban and K. Zarembo, Worldsheet scattering in AdS5 × S5,

JHEP 03 (2007) 094 [hep-th/0611169].

[49] R.K. Kaul and R. Rajaraman, Soliton energies in supersymmetric theories, Phys. Lett. B

131 (1983) 357.

– 44 –

http://jhep.sissa.it/stdsearch?paper=03%282007%29094
http://arxiv.org/abs/hep-th/0611169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB131%2C357
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB131%2C357

